Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1972, Volume 10, Number 2, Pages 162–181 (Mi tmf2652)  

This article is cited in 43 scientific papers (total in 43 papers)

Oscillator levels of a particle as a consequence of a strong interaction with a field

E. P. Solodovnikova, A. N. Tavkhelidze, O. A. Khrustalev
References:
Abstract: A Bogolyubov transformation is used to separate the motion of a particle that interacts strongly with a scalar field. The effective potential for the particle in this case reduces to an oscillator potential.
Received: 11.06.1971
English version:
Theoretical and Mathematical Physics, 1972, Volume 10, Issue 2, Pages 105–118
DOI: https://doi.org/10.1007/BF01090720
Language: Russian
Citation: E. P. Solodovnikova, A. N. Tavkhelidze, O. A. Khrustalev, “Oscillator levels of a particle as a consequence of a strong interaction with a field”, TMF, 10:2 (1972), 162–181; Theoret. and Math. Phys., 10:2 (1972), 105–118
Citation in format AMSBIB
\Bibitem{SolTavKhr72}
\by E.~P.~Solodovnikova, A.~N.~Tavkhelidze, O.~A.~Khrustalev
\paper Oscillator levels of a particle as a consequence of a strong interaction with a field
\jour TMF
\yr 1972
\vol 10
\issue 2
\pages 162--181
\mathnet{http://mi.mathnet.ru/tmf2652}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 10
\issue 2
\pages 105--118
\crossref{https://doi.org/10.1007/BF01090720}
Linking options:
  • https://www.mathnet.ru/eng/tmf2652
  • https://www.mathnet.ru/eng/tmf/v10/i2/p162
    Cycle of papers
    This publication is cited in the following 43 articles:
    1. Ostanina V M. Tomasi-Vshivtseva P.A., “Quantization of Nonlinear Fields Using Bogolyubov Variables”, Phys. Part. Nuclei Lett., 18:6 (2021), 648–651  crossref  isi
    2. Jafarov R.G. Agham-Alieva L.A. Agha-Kishieva P.E. Rahim-zade S.G. Mamedova S.N. Mutallimov M.M., “Problem of the Landau Poles in Quantum Field Theory: from N. N. Bogolyubov to the Present Day”, Russ. Phys. J., 59:11 (2017), 1971–1980  crossref  isi  scopus
    3. F. G. Bassani, V. Cataudella, M. L. Chiofalo, G. De Filippis, G. Iadonisi, C. A. Perroni, “Electron gas with polaronic effects: beyond the mean‐field theory”, Physica Status Solidi (b), 237:1 (2003), 173  crossref
    4. E. Yu. Spirina, O. A. Khrustalev, M. V. Chichikina, “Nonstationary polaron”, Theoret. and Math. Phys., 122:3 (2000), 347–354  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. P. K. Silaev, O. A. Khrustalev, “Double-periodic solutions in an essentially nonlinear one-dimensional field model”, Theoret. and Math. Phys., 117:2 (1998), 1345–1350  mathnet  crossref  crossref  zmath  isi
    6. O. A. Khrustalev, M. V. Chichikina, “Bogoliubov group variables in the relativistic quantum field theory”, Theoret. and Math. Phys., 111:2 (1997), 583–591  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. K. A. Sveshnikov, “Nonclassical analogs of solitons in quantum field theory”, Theoret. and Math. Phys., 94:1 (1993), 39–47  mathnet  crossref  mathscinet  zmath  isi
    8. K. Sveshnikov, “Non-classical solitons”, Physics Letters B, 313:1-2 (1993), 96  crossref
    9. Theoret. and Math. Phys., 93:3 (1992), 1345–1360  mathnet  crossref  isi
    10. A. A. Torotadze, A. V. Shurgaya, “Two-dimensional model of the interaction of a nonrelativistic particle with scalar mesons in the strong-coupling limit”, Theoret. and Math. Phys., 76:2 (1988), 826–833  mathnet  crossref  isi
    11. S. I. Zlatev, V. A. Matveev, “The problem of infrared divergences in soliton quantization”, Theoret. and Math. Phys., 62:1 (1985), 31–42  mathnet  crossref  isi
    12. N. N. Bogolubov, N. N. Bogolubov, “Some approaches to polaron theory”, Found Phys, 15:11 (1985), 1079  crossref
    13. K. A. Sveshnikov, “Covariant perturbation theory in the neighborhood of a classical solution”, Theoret. and Math. Phys., 55:3 (1983), 553–568  mathnet  crossref  mathscinet  isi
    14. A. V. Shurgaya, “The method of collective variables in relativistic theory”, Theoret. and Math. Phys., 57:3 (1983), 1216–1225  mathnet  crossref  isi
    15. S. I. Zlatev, V. A. Matveev, G. A. Chechelashvili, “The problem of zero-frequency modes in the quantum theory of solitons”, Theoret. and Math. Phys., 50:3 (1982), 211–217  mathnet  crossref  mathscinet  isi
    16. V. G. Bornyakov, “Strong coupling method in a symmetric scalar theory with two sources”, Theoret. and Math. Phys., 51:2 (1982), 476–483  mathnet  crossref  isi
    17. A. V. Razumov, A. Yu. Taranov, “Collective coordinates on symplectic manifolds”, Theoret. and Math. Phys., 52:1 (1982), 641–647  mathnet  crossref  mathscinet  zmath  isi
    18. V. G. Budanov, “Particle in a self-consistent field some exact solutions”, Theoret. and Math. Phys., 49:2 (1981), 979–986  mathnet  crossref  mathscinet  isi
    19. Sh. I. Vashakidze, V. A. Matveev, “Bogolyubov transformation in the problem of capture of a massive particle by a quantum field”, Theoret. and Math. Phys., 45:3 (1980), 1069–1077  mathnet  crossref  mathscinet  isi
    20. A. V. Shurgaya, “The method of collective variables and the generalized Hamiltonian formalism”, Theoret. and Math. Phys., 45:1 (1980), 873–879  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:432
    Full-text PDF :181
    References:78
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025