Abstract:
A Bogolyubov transformation is used to separate the motion of a particle that interacts
strongly with a scalar field. The effective potential for the particle in this case reduces
to an oscillator potential.
Citation:
E. P. Solodovnikova, A. N. Tavkhelidze, O. A. Khrustalev, “Oscillator levels of a particle as a consequence of a strong interaction with a field”, TMF, 10:2 (1972), 162–181; Theoret. and Math. Phys., 10:2 (1972), 105–118
\Bibitem{SolTavKhr72}
\by E.~P.~Solodovnikova, A.~N.~Tavkhelidze, O.~A.~Khrustalev
\paper Oscillator levels of a particle as a consequence of a strong interaction with a field
\jour TMF
\yr 1972
\vol 10
\issue 2
\pages 162--181
\mathnet{http://mi.mathnet.ru/tmf2652}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 10
\issue 2
\pages 105--118
\crossref{https://doi.org/10.1007/BF01090720}
This publication is cited in the following 43 articles:
Ostanina V M. Tomasi-Vshivtseva P.A., “Quantization of Nonlinear Fields Using Bogolyubov Variables”, Phys. Part. Nuclei Lett., 18:6 (2021), 648–651
Jafarov R.G. Agham-Alieva L.A. Agha-Kishieva P.E. Rahim-zade S.G. Mamedova S.N. Mutallimov M.M., “Problem of the Landau Poles in Quantum Field Theory: from N. N. Bogolyubov to the Present Day”, Russ. Phys. J., 59:11 (2017), 1971–1980
F. G. Bassani, V. Cataudella, M. L. Chiofalo, G. De Filippis, G. Iadonisi, C. A. Perroni, “Electron gas with polaronic effects: beyond the mean‐field theory”, Physica Status Solidi (b), 237:1 (2003), 173
E. Yu. Spirina, O. A. Khrustalev, M. V. Chichikina, “Nonstationary polaron”, Theoret. and Math. Phys., 122:3 (2000), 347–354
P. K. Silaev, O. A. Khrustalev, “Double-periodic solutions in an essentially nonlinear one-dimensional field model”, Theoret. and Math. Phys., 117:2 (1998), 1345–1350
O. A. Khrustalev, M. V. Chichikina, “Bogoliubov group variables in the relativistic quantum field theory”, Theoret. and Math. Phys., 111:2 (1997), 583–591
K. A. Sveshnikov, “Nonclassical analogs of solitons in quantum field theory”, Theoret. and Math. Phys., 94:1 (1993), 39–47
K. Sveshnikov, “Non-classical solitons”, Physics Letters B, 313:1-2 (1993), 96
Theoret. and Math. Phys., 93:3 (1992), 1345–1360
A. A. Torotadze, A. V. Shurgaya, “Two-dimensional model of the interaction of a nonrelativistic particle with scalar mesons in the strong-coupling limit”, Theoret. and Math. Phys., 76:2 (1988), 826–833
S. I. Zlatev, V. A. Matveev, “The problem of infrared divergences in soliton quantization”, Theoret. and Math. Phys., 62:1 (1985), 31–42
N. N. Bogolubov, N. N. Bogolubov, “Some approaches to polaron theory”, Found Phys, 15:11 (1985), 1079
K. A. Sveshnikov, “Covariant perturbation theory in the neighborhood of a classical solution”, Theoret. and Math. Phys., 55:3 (1983), 553–568
A. V. Shurgaya, “The method of collective variables in relativistic theory”, Theoret. and Math. Phys., 57:3 (1983), 1216–1225
S. I. Zlatev, V. A. Matveev, G. A. Chechelashvili, “The problem of zero-frequency modes in the quantum theory of solitons”, Theoret. and Math. Phys., 50:3 (1982), 211–217
V. G. Bornyakov, “Strong coupling method in a symmetric scalar theory with two sources”, Theoret. and Math. Phys., 51:2 (1982), 476–483
A. V. Razumov, A. Yu. Taranov, “Collective coordinates on symplectic manifolds”, Theoret. and Math. Phys., 52:1 (1982), 641–647
V. G. Budanov, “Particle in a self-consistent field some exact solutions”, Theoret. and Math. Phys., 49:2 (1981), 979–986
Sh. I. Vashakidze, V. A. Matveev, “Bogolyubov transformation in the problem of capture of a massive particle by a quantum field”, Theoret. and Math. Phys., 45:3 (1980), 1069–1077
A. V. Shurgaya, “The method of collective variables and the generalized Hamiltonian formalism”, Theoret. and Math. Phys., 45:1 (1980), 873–879