Abstract:
The reasons for the contradictions between the results of different studies devoted to crystallization in terms of bifurcation of the solutions of nonlinear integral equations for the single-particle distribution function are elucidated. It is shown to be impossible to describe crystallization in a system of hard spheres in the framework of the standard approach based on an investigation into the instability of a liquid with respect to a continuous change in the density. An alternative formulation of the theory is proposed in which the fundamental role is played by the finite discontinuity of the density at the point of the transition from the liquid to the solid phase.
Citation:
V. N. Ryzhov, E. E. Tareeva, “Statistical theory of crystallization in a system of hard spheres”, TMF, 48:3 (1981), 416–423; Theoret. and Math. Phys., 48:3 (1981), 835–840
\Bibitem{RyzTar81}
\by V.~N.~Ryzhov, E.~E.~Tareeva
\paper Statistical theory of crystallization in a~system of hard spheres
\jour TMF
\yr 1981
\vol 48
\issue 3
\pages 416--423
\mathnet{http://mi.mathnet.ru/tmf2504}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=662414}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 48
\issue 3
\pages 835--840
\crossref{https://doi.org/10.1007/BF01019321}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NL03000013}
Linking options:
https://www.mathnet.ru/eng/tmf2504
https://www.mathnet.ru/eng/tmf/v48/i3/p416
This publication is cited in the following 32 articles:
V. N Ryzhov, E. A Gayduk, E. E Tareeva, Yu. D Fomin, E. N Tsiok, “Stsenarii plavleniya dvumernykh sistem - vozmozhnosti komp'yuternogo modelirovaniya”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 164:1 (2023), 143
V. N. Ryzhov, E. A. Gaiduk, E. E. Tareeva, Yu. D. Fomin, E. N. Tsiok, “Melting Scenarios of Two-Dimensional Systems: Possibilities of Computer Simulation”, J. Exp. Theor. Phys., 137:1 (2023), 125
V. N. Ryzhov, E. E. Tareyeva, Yu. D. Fomin, E. N. Tsiok, “Complex phase diagrams of systems with isotropic potentials: results of computer simulations”, Phys. Usp., 63:5 (2020), 417–439
V. N. Ryzhov, E. A. Gaiduk, E. E. Tareyeva, Yu. D. Fomin, E. N. Tsiok, “The Berezinskii–Kosterlitz–Thouless Transition and Melting Scenarios of Two-Dimensional Systems”, Phys. Part. Nuclei, 51:4 (2020), 786
V. N. Ryzhov, E. E. Tareeva, “Possible scenarios of a phase transition from isotropic liquid to a hexatic phase in the theory of melting in two-dimensional systems”, Theoret. and Math. Phys., 200:1 (2019), 1053–1062
Vassiliy Lubchenko, “Low-temperature anomalies in disordered solids: a cold case of contested relics?”, Advances in Physics: X, 3:1 (2018), 1510296
V. N. Ryzhov, E. E. Tareeva, Yu. D. Fomin, E. N. Tsiok, E. S. Chumakov, “Renormalization group study of the melting of a two-dimensional system of collapsing hard disks”, Theoret. and Math. Phys., 191:3 (2017), 842–855
V. N. Ryzhov, E. E. Tareyeva, Yu. D. Fomin, E. N. Tsiok, “Berezinskii – Kosterlitz – Thouless transition and two-dimensional melting”, Phys. Usp., 60:9 (2017), 857–885
Vassiliy Lubchenko, “Theory of the structural glass transition: a pedagogical review”, Advances in Physics, 64:3 (2015), 283
V. N. Ryzhov, A. F. Barabanov, M. V. Magnitskaya, E. E. Tareeva, “Theoretical studies of condensed matter”, Phys. Usp., 51:10 (2008), 1077–1083
Xu, XL, “A density functional theory of one- and two-layer freezing in a confined colloid system”, Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 464:2089 (2008), 65
V. N. Bondarev, “Statistical theory of noble-gas crystals and the phenomenon of sublimation”, Phys. Rev. E, 71:5 (2005)
Yu. V. Agrafonov, G. A. Martynov, “Statistical theory of the crystal state”, Theoret. and Math. Phys., 90:1 (1992), 75–84
M. Baus, NATO ASI Series, 174, Physicochemical Hydrodynamics, 1988, 787
John Archibald Wheeler, Energy in Physics, War and Peace, 1988, 101
V. N. Ryzhov, E. E. Tareeva, “Microscopic description of bond orientational order in simple liquids”, Theoret. and Math. Phys., 73:3 (1987), 1344–1352
S. J. Smithline, A. D. J. Haymet, “Density functional theory for the freezing of 1:1 hard sphere mixtures”, The Journal of Chemical Physics, 86:11 (1987), 6486
M. Baus, Strongly Coupled Plasma Physics, 1987, 305
M. Baus, “Statistical mechanical theories of freezing: An overview”, J Stat Phys, 48:5-6 (1987), 1129
A. D. J. Haymet, David W. Oxtoby, “A molecular theory for freezing: Comparison of theories, and results for hard spheres”, The Journal of Chemical Physics, 84:3 (1986), 1769