Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 137, Number 1, Pages 59–65
DOI: https://doi.org/10.4213/tmf245
(Mi tmf245)
 

This article is cited in 5 scientific papers (total in 5 papers)

Interaction of Moving Localized Oscillations with a Local Inhomogeneity in Nonlinear Hamiltonian Klein–Gordon Lattices

J. Cuevas, F. Palmero, J. Archilla, F. R. Romero

University of Seville
Full-text PDF (203 kB) Citations (5)
References:
Abstract: We study the interaction of moving localized oscillations with a local inhomogeneity in a discrete nonlinear Hamiltonian system. We conjecture that resonance with a static nonlinear localized oscillation centered at the local inhomogeneity is a necessary condition for observing the trapping phenomenon. Analytic calculations and numerical simulations agree well with our hypothesis.
Keywords: discrete breathers, mobile breathers, intrinsic localized modes, impurities, inhomogeneity.
English version:
Theoretical and Mathematical Physics, 2003, Volume 137, Issue 1, Pages 1406–1411
DOI: https://doi.org/10.1023/A:1026048521794
Bibliographic databases:
Language: Russian
Citation: J. Cuevas, F. Palmero, J. Archilla, F. R. Romero, “Interaction of Moving Localized Oscillations with a Local Inhomogeneity in Nonlinear Hamiltonian Klein–Gordon Lattices”, TMF, 137:1 (2003), 59–65; Theoret. and Math. Phys., 137:1 (2003), 1406–1411
Citation in format AMSBIB
\Bibitem{CuePalArc03}
\by J.~Cuevas, F.~Palmero, J.~Archilla, F.~R.~Romero
\paper Interaction of Moving Localized Oscillations with a Local Inhomogeneity in Nonlinear Hamiltonian Klein--Gordon Lattices
\jour TMF
\yr 2003
\vol 137
\issue 1
\pages 59--65
\mathnet{http://mi.mathnet.ru/tmf245}
\crossref{https://doi.org/10.4213/tmf245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2048089}
\zmath{https://zbmath.org/?q=an:1178.82049}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 1
\pages 1406--1411
\crossref{https://doi.org/10.1023/A:1026048521794}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186557700006}
Linking options:
  • https://www.mathnet.ru/eng/tmf245
  • https://doi.org/10.4213/tmf245
  • https://www.mathnet.ru/eng/tmf/v137/i1/p59
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :202
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024