Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 137, Number 1, Pages 47–58
DOI: https://doi.org/10.4213/tmf244
(Mi tmf244)
 

This article is cited in 11 scientific papers (total in 11 papers)

Geometry of Submanifolds Derived from $\operatorname{Spin}$-Valued Spectral Problems

J. L. Cieslinski

University of Bialystok
References:
Abstract: We present recent results motivated by Sym's theory of soliton surfaces. Quite general assumptions about the structure of the spectral problem can lead to some specific classes of surfaces. In some cases (including pseudospherical surfaces), this approach is coordinate-independent, which seems a surprising novelty. The Darboux–Bäcklund transformation is formulated in terms of Clifford numbers, which greatly simplifies constructing explicit solutions. Cumbersome computations in matrix representations are replaced with rotations represented by elements of an appropriate $\operatorname{Spin}$ group. Finally, the spectral problem and the spectral parameter are derived purely geometrically in the case of isometric immersions of constant-curvature spaces in spheres and Euclidean spaces.
Keywords: soliton surfaces, Darboux–Bäcklund transformation, Clifford algebra, $\operatorname{Spin}$ group.
English version:
Theoretical and Mathematical Physics, 2003, Volume 137, Issue 1, Pages 1396–1405
DOI: https://doi.org/10.1023/A:1026096404956
Bibliographic databases:
Language: Russian
Citation: J. L. Cieslinski, “Geometry of Submanifolds Derived from $\operatorname{Spin}$-Valued Spectral Problems”, TMF, 137:1 (2003), 47–58; Theoret. and Math. Phys., 137:1 (2003), 1396–1405
Citation in format AMSBIB
\Bibitem{Cie03}
\by J.~L.~Cieslinski
\paper Geometry of Submanifolds Derived from $\operatorname{Spin}$-Valued Spectral Problems
\jour TMF
\yr 2003
\vol 137
\issue 1
\pages 47--58
\mathnet{http://mi.mathnet.ru/tmf244}
\crossref{https://doi.org/10.4213/tmf244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2048088}
\zmath{https://zbmath.org/?q=an:1178.53044}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 1
\pages 1396--1405
\crossref{https://doi.org/10.1023/A:1026096404956}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186557700005}
Linking options:
  • https://www.mathnet.ru/eng/tmf244
  • https://doi.org/10.4213/tmf244
  • https://www.mathnet.ru/eng/tmf/v137/i1/p47
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :196
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024