Abstract:
Restrictions on the wave front of Feynman amplitudes in the momentum space are proved. It is established that the amplitude FΓ(q1,…,qk) corresponding to massless diagrams Γ with two or three external lines are infinitely differentiable functions for q2i≠0 (i=1,2 or i=1,2,3).
Citation:
V. A. Smirnov, “Singularities of feynman amplitudes in the momentum space”, TMF, 47:1 (1981), 140–143; Theoret. and Math. Phys., 47:1 (1981), 369–371
\Bibitem{Smi81}
\by V.~A.~Smirnov
\paper Singularities of feynman amplitudes in the momentum space
\jour TMF
\yr 1981
\vol 47
\issue 1
\pages 140--143
\mathnet{http://mi.mathnet.ru/tmf2381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=616446}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 47
\issue 1
\pages 369--371
\crossref{https://doi.org/10.1007/BF01017029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MS49200012}
Linking options:
https://www.mathnet.ru/eng/tmf2381
https://www.mathnet.ru/eng/tmf/v47/i1/p140
This publication is cited in the following 1 articles:
V. A. Smirnov, “Absolutely convergent $\alpha$ representation of analytically and dimensionally regularized Feynman amplitudes”, Theoret. and Math. Phys., 59:3 (1984), 563–573