Abstract:
In the framework of the renormalization-group approach in the theory of turbulence
proposed by De Dominieis and Martin [1], the problem of renormalization and
determination of the critical dimensions of composite operators is discussed. The
renormalization of the system of operators of canonical dimension 4, which
includes the operator F=φΔφ, where φ is the velocity field, is considered. It is shown that the critical dimension ΔF associated with this operator is exactly equal to the Kolmogorov dimension: ΔF=0. The Appendix gives brief proofs of, first, a theorem on the equivalence of an arbitrary stochastic problem and quantum field theory and, second, a theorem that determines the restriction of the Green's functions of a stochastic problem to a simultaneity surface.
Citation:
L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. M. Pis'mak, “Renormalization-group approach in the theory of turbulence: The dimensions of composite operators”, TMF, 57:2 (1983), 268–281; Theoret. and Math. Phys., 57:2 (1983), 1131–1141
\Bibitem{AdzVasPis83}
\by L.~Ts.~Adzhemyan, A.~N.~Vasil'ev, Yu.~M.~Pis'mak
\paper Renormalization-group approach in the theory of turbulence: The dimensions of composite operators
\jour TMF
\yr 1983
\vol 57
\issue 2
\pages 268--281
\mathnet{http://mi.mathnet.ru/tmf2264}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=734889}
\zmath{https://zbmath.org/?q=an:0524.76067|0556.76043}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 57
\issue 2
\pages 1131--1141
\crossref{https://doi.org/10.1007/BF01018658}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SX71000011}
Linking options:
https://www.mathnet.ru/eng/tmf2264
https://www.mathnet.ru/eng/tmf/v57/i2/p268
This publication is cited in the following 92 articles:
Nikolay V. Antonov, Michal Hnatič, Juha Honkonen, Polina I. Kakin, Tomáš Lučivjanský, Lukáš Mižišin, “Renormalized field theory for non-equilibrium systems”, Riv. Nuovo Cim., 2025
N. V. Antonov, A. A. Babakin, N. M. Gulitskiy, P. I. Kakin, “Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth in Random Environment”, J Stat Phys, 192:2 (2025)
Michal Hnatič, Tomáš Lučivjanský, Lukáš Mižišin, Yurii Molotkov, Andrei Ovsiannikov, “Renormalization Analysis of Magnetohydrodynamics: Two-Loop Approximation”, Universe, 10:6 (2024), 240
Michal Hnatič, Matej Kecer, Tomáš Lučivjanský, Springer Proceedings in Complexity, 16th Chaotic Modeling and Simulation International Conference, 2024, 191
Michal Hnatič, T. Lučivjanský, L. Mižišin, Iu. Molotkov, A. Ovsiannikov, Springer Proceedings in Complexity, 16th Chaotic Modeling and Simulation International Conference, 2024, 203
Nikolay V. Antonov, Nikolay M. Gulitskiy, Polina I. Kakin, Nikita M. Lebedev, Maria M. Tumakova, “Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili”, Symmetry, 15:8 (2023), 1556
E. Jurčišinová, M. Jurčišin, R. Remecký, “Anomalous scaling in kinematic magnetohydrodynamic turbulence: Two-loop anomalous dimensions of leading composite operators”, Phys. Rev. E, 107:2 (2023)
Antonov V N., Gulitskiy N.M., Kakin I P., Serov V.D., “Effects of Turbulent Environment and Random Noise on Self-Organized Critical Behavior: Universality Versus Nonuniversality”, Phys. Rev. E, 103:4 (2021), 042106
N. V. Antonov, M. M. Kostenko, “Renormalization Group in the Problem of Active Scalar Advection”, J Math Sci, 257:4 (2021), 425
Šarlota Birnšteinová, Michal Hnatič, Tomáš Lučivjanský, Springer Proceedings in Complexity, 12th Chaotic Modeling and Simulation International Conference, 2020, 45
Malo Tarpin, Springer Theses, Non-perturbative Renormalization Group Approach to Some Out-of-Equilibrium Systems, 2020, 7
N. V. Antonov, M. M. Kostenko, “Renormalization group in the problem of active scalar advection”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 26, Zap. nauchn. sem. POMI, 487, POMI, SPb., 2019, 5–27
Hnatic M., Honkonen J., Lucivjansky T., “Symmetry Breaking in Stochastic Dynamics and Turbulence”, Symmetry-Basel, 11:10 (2019), 1193
E V Teodorovich, “On Functional Formulation of the Statistical Theory of Homogeneous Turbulence and the Method of Skeleton Feynman Diagrams”, J. Phys.: Conf. Ser., 1250:1 (2019), 012002
Michal Hnatič, Georgii Kalagov, Tomáš Lučivjanský, Peter Zalom, Springer Proceedings in Complexity, 11th Chaotic Modeling and Simulation International Conference, 2019, 95
Antonov N.V., Gulitskiy N.M., Kostenko M.M., Malyshev A.V., “Statistical Symmetry Restoration in Fully Developed Turbulence: Renormalization Group Analysis of Two Models”, Phys. Rev. E, 97:3 (2018), 033101
Hnatic M., Zalom P., “Helical Turbulent Prandtl Number in the a Model of Passive Vector Advection: Two-Loop Approximation”, Phys. Atom. Nuclei, 81:6 (2018), 863–868
Altaisky V M., Hnatich M., Kaputkina N.E., “Renormalization of Viscosity in Wavelet-Based Model of Turbulence”, Phys. Rev. E, 98:3 (2018), 033116
Antonov N.V., Gulitskiy N.M., Kostenko M.M., Lucivjansky T., “Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields”, Phys. Rev. E, 95:3 (2017), 033120
Jurcisinova E., Jurcisin M., Menkyna M., “Simultaneous Influence of Helicity and Compressibility on Anomalous Scaling of the Magnetic Field in the Kazantsev-Kraichnan Model”, Phys. Rev. E, 95:5 (2017), 053210