Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 57, Number 2, Pages 268–281 (Mi tmf2264)  

This article is cited in 92 scientific papers (total in 92 papers)

Renormalization-group approach in the theory of turbulence: The dimensions of composite operators

L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. M. Pis'mak

Leningrad State University
References:
Abstract: In the framework of the renormalization-group approach in the theory of turbulence proposed by De Dominieis and Martin [1], the problem of renormalization and determination of the critical dimensions of composite operators is discussed. The renormalization of the system of operators of canonical dimension 4, which includes the operator F=φΔφ, where φ is the velocity field, is considered. It is shown that the critical dimension ΔF associated with this operator is exactly equal to the Kolmogorov dimension: ΔF=0. The Appendix gives brief proofs of, first, a theorem on the equivalence of an arbitrary stochastic problem and quantum field theory and, second, a theorem that determines the restriction of the Green's functions of a stochastic problem to a simultaneity surface.
Received: 28.01.1983
English version:
Theoretical and Mathematical Physics, 1983, Volume 57, Issue 2, Pages 1131–1141
DOI: https://doi.org/10.1007/BF01018658
Bibliographic databases:
Language: Russian
Citation: L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. M. Pis'mak, “Renormalization-group approach in the theory of turbulence: The dimensions of composite operators”, TMF, 57:2 (1983), 268–281; Theoret. and Math. Phys., 57:2 (1983), 1131–1141
Citation in format AMSBIB
\Bibitem{AdzVasPis83}
\by L.~Ts.~Adzhemyan, A.~N.~Vasil'ev, Yu.~M.~Pis'mak
\paper Renormalization-group approach in the theory of turbulence: The dimensions of composite operators
\jour TMF
\yr 1983
\vol 57
\issue 2
\pages 268--281
\mathnet{http://mi.mathnet.ru/tmf2264}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=734889}
\zmath{https://zbmath.org/?q=an:0524.76067|0556.76043}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 57
\issue 2
\pages 1131--1141
\crossref{https://doi.org/10.1007/BF01018658}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SX71000011}
Linking options:
  • https://www.mathnet.ru/eng/tmf2264
  • https://www.mathnet.ru/eng/tmf/v57/i2/p268
  • This publication is cited in the following 92 articles:
    1. Nikolay V. Antonov, Michal Hnatič, Juha Honkonen, Polina I. Kakin, Tomáš Lučivjanský, Lukáš Mižišin, “Renormalized field theory for non-equilibrium systems”, Riv. Nuovo Cim., 2025  crossref
    2. N. V. Antonov, A. A. Babakin, N. M. Gulitskiy, P. I. Kakin, “Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth in Random Environment”, J Stat Phys, 192:2 (2025)  crossref
    3. Michal Hnatič, Tomáš Lučivjanský, Lukáš Mižišin, Yurii Molotkov, Andrei Ovsiannikov, “Renormalization Analysis of Magnetohydrodynamics: Two-Loop Approximation”, Universe, 10:6 (2024), 240  crossref
    4. Michal Hnatič, Matej Kecer, Tomáš Lučivjanský, Springer Proceedings in Complexity, 16th Chaotic Modeling and Simulation International Conference, 2024, 191  crossref
    5. Michal Hnatič, T. Lučivjanský, L. Mižišin, Iu. Molotkov, A. Ovsiannikov, Springer Proceedings in Complexity, 16th Chaotic Modeling and Simulation International Conference, 2024, 203  crossref
    6. Nikolay V. Antonov, Nikolay M. Gulitskiy, Polina I. Kakin, Nikita M. Lebedev, Maria M. Tumakova, “Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili”, Symmetry, 15:8 (2023), 1556  crossref
    7. E. Jurčišinová, M. Jurčišin, R. Remecký, “Anomalous scaling in kinematic magnetohydrodynamic turbulence: Two-loop anomalous dimensions of leading composite operators”, Phys. Rev. E, 107:2 (2023)  crossref
    8. Antonov V N., Gulitskiy N.M., Kakin I P., Serov V.D., “Effects of Turbulent Environment and Random Noise on Self-Organized Critical Behavior: Universality Versus Nonuniversality”, Phys. Rev. E, 103:4 (2021), 042106  crossref  isi
    9. N. V. Antonov, M. M. Kostenko, “Renormalization Group in the Problem of Active Scalar Advection”, J Math Sci, 257:4 (2021), 425  crossref
    10. Šarlota Birnšteinová, Michal Hnatič, Tomáš Lučivjanský, Springer Proceedings in Complexity, 12th Chaotic Modeling and Simulation International Conference, 2020, 45  crossref
    11. Malo Tarpin, Springer Theses, Non-perturbative Renormalization Group Approach to Some Out-of-Equilibrium Systems, 2020, 7  crossref
    12. N. V. Antonov, M. M. Kostenko, “Renormalization group in the problem of active scalar advection”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 26, Zap. nauchn. sem. POMI, 487, POMI, SPb., 2019, 5–27  mathnet
    13. Hnatic M., Honkonen J., Lucivjansky T., “Symmetry Breaking in Stochastic Dynamics and Turbulence”, Symmetry-Basel, 11:10 (2019), 1193  crossref  isi
    14. E V Teodorovich, “On Functional Formulation of the Statistical Theory of Homogeneous Turbulence and the Method of Skeleton Feynman Diagrams”, J. Phys.: Conf. Ser., 1250:1 (2019), 012002  crossref
    15. Michal Hnatič, Georgii Kalagov, Tomáš Lučivjanský, Peter Zalom, Springer Proceedings in Complexity, 11th Chaotic Modeling and Simulation International Conference, 2019, 95  crossref
    16. Antonov N.V., Gulitskiy N.M., Kostenko M.M., Malyshev A.V., “Statistical Symmetry Restoration in Fully Developed Turbulence: Renormalization Group Analysis of Two Models”, Phys. Rev. E, 97:3 (2018), 033101  crossref  isi
    17. Hnatic M., Zalom P., “Helical Turbulent Prandtl Number in the a Model of Passive Vector Advection: Two-Loop Approximation”, Phys. Atom. Nuclei, 81:6 (2018), 863–868  crossref  isi  scopus
    18. Altaisky V M., Hnatich M., Kaputkina N.E., “Renormalization of Viscosity in Wavelet-Based Model of Turbulence”, Phys. Rev. E, 98:3 (2018), 033116  crossref  isi  scopus
    19. Antonov N.V., Gulitskiy N.M., Kostenko M.M., Lucivjansky T., “Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields”, Phys. Rev. E, 95:3 (2017), 033120  crossref  isi  scopus
    20. Jurcisinova E., Jurcisin M., Menkyna M., “Simultaneous Influence of Helicity and Compressibility on Anomalous Scaling of the Magnetic Field in the Kazantsev-Kraichnan Model”, Phys. Rev. E, 95:5 (2017), 053210  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:822
    Full-text PDF :277
    References:68
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025