Abstract:
The Cauchy problem is solved for a relativistic wave equation determined by the
operators of exterior differentiation and eodifferentiation. An invariant quantization
scheme is constructed, and an expression for the commutator function is obtained
explicitly.
Citation:
A. A. Leonovich, “Solution of the Cauchy problem and the commutator function for a tensor wave equation”, TMF, 57:2 (1983), 265–267; Theoret. and Math. Phys., 57:2 (1983), 1129–1130
\Bibitem{Leo83}
\by A.~A.~Leonovich
\paper Solution of the Cauchy problem and the commutator function for a~tensor wave equation
\jour TMF
\yr 1983
\vol 57
\issue 2
\pages 265--267
\mathnet{http://mi.mathnet.ru/tmf2260}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=734888}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 57
\issue 2
\pages 1129--1130
\crossref{https://doi.org/10.1007/BF01018657}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SX71000010}
Linking options:
https://www.mathnet.ru/eng/tmf2260
https://www.mathnet.ru/eng/tmf/v57/i2/p265
This publication is cited in the following 2 articles:
Yu. N. Obukhov, S. N. Solodukhin, “Dirac equation and the Ivanenko-Landau-K�hler equation”, Int J Theor Phys, 33:2 (1994), 225
Yu. N. Obukhov, S. N. Solodukhin, “Reduction of the dirac equation and its connection with the Ivanenko–Landau–Kähler equation”, Theoret. and Math. Phys., 94:2 (1993), 198–210