Abstract:
A class of p integrals which arise in perturbative calculations of some problems in
quantum field theory is considered. An algorithm of analytic calculation of any p integral at the three-loop level convenient for realization in the existing systems of analytic calculation is constructed.
This publication is cited in the following 19 articles:
Xin Guan, Xiang Li, Yan-Qing Ma, “Exploring the linear space of Feynman integrals via generating functions”, Phys. Rev. D, 108:3 (2023)
J. Blümlein, P. Marquard, C. Schneider, K. Schönwald, “The three-loop polarized singlet anomalous dimensions from off-shell operator matrix elements”, J. High Energ. Phys., 2022:1 (2022)
Andrei I. Davydychev, York Schröder, “Recursion-free solution for two-loop vacuum integrals with “collinear” masses”, J. High Energ. Phys., 2022:12 (2022)
J. Blümlein, P. Marquard, C. Schneider, K. Schönwald, “The massless three-loop Wilson coefficients for the deep-inelastic structure functions F2, FL, xF3 and g1”, J. High Energ. Phys., 2022:11 (2022)
B. Ruijl, T. Ueda, J.A.M. Vermaseren, “Forcer, a Form program for the parametric reduction of four-loop massless propagator diagrams”, Computer Physics Communications, 253 (2020), 107198
Gracey J.A., “Large N-F Quantum Field Theory”, Int. J. Mod. Phys. A, 33:35 (2018), 1830032
T Ueda, B Ruijl, J A M Vermaseren, “Efficient reduction of four-loop massless propagators”, J. Phys.: Conf. Ser., 920 (2017), 012002
Michael I. Buchoff, Michael Wagman, “Perturbative renormalization of neutron-antineutron operators”, Phys. Rev. D, 93:1 (2016)
T Ueda, B Ruijl, J A M Vermaseren, “Calculating four-loop massless propagators with Forcer”, J. Phys.: Conf. Ser., 762 (2016), 012060
B. Ruijl, T. Ueda, J.A.M. Vermaseren, “The diamond rule for multi-loop Feynman diagrams”, Physics Letters B, 746 (2015), 347
A. Mitov, S. Moch, “QCD corrections to semi-inclusive hadron production in electron–positron annihilation at two loops”, Nuclear Physics B, 751:1-2 (2006), 18
J.A.M. Vermaseren, A. Vogt, S. Moch, “The third-order QCD corrections to deep-inelastic scattering by photon exchange”, Nuclear Physics B, 724:1-2 (2005), 3
Ferroglia, A, “Two-loop vertices in quantum field theory: infrared convergent scalar configurations”, Nuclear Physics B, 680:1–3 (2004), 199
S. Moch, J.A.M. Vermaseren, A. Vogt, “The QCD Splitting Functions at Three Loops: Methods and Results”, Nuclear Physics B - Proceedings Supplements, 135 (2004), 137
J.A.M Vermaseren, S Moch, A Vogt, “First results for three-loop deep-inelastic structure functions in QCD”, Nuclear Physics B - Proceedings Supplements, 116 (2003), 100
S. Moch, J.A.M. Vermaseren, A. Vogt, “Non-singlet structure functions at three loops: Fermionic contributions”, Nuclear Physics B, 646:1-2 (2002), 181
Passarino, G, “An approach toward the numerical evaluation of multi-loop Feynman diagrams”, Nuclear Physics B, 619:1–3 (2001), 257
E. E. Boos, A. I. Davydychev, “A method of calculating massive Feynman integrals”, Theoret. and Math. Phys., 89:1 (1991), 1052–1064
L. R. Surguladze, F. V. Tkachev, “Coefficient functions of gluon and quark condensates in QCD sum rules for light vector mesons in the two-loop approximation”, Theoret. and Math. Phys., 75:2 (1988), 502–509