Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 56, Number 3, Pages 357–367 (Mi tmf2219)  

This article is cited in 3 scientific papers (total in 3 papers)

Quantum-mechanical oscillator with arbitrary anharmonicity: $1/N$ Expansion and perturbation theory

A. V. Kudinov, M. A. Smondyrev
Full-text PDF (574 kB) Citations (3)
References:
Abstract: The properties of the $1/N$ expansion are investigated for the problem of an Ndimensional anharmonic oscillator with arbitrary power anharmonieity. The first six terms in the expansion of the energies of the ground and first excited levels are obtained in analytic form. The asymptotic behavior of the coefficients in large orders of the $1/N$ expansion is investigated. The obtained formulas are used to determine expressions for the first six coefficients of the standard perturbation theory in powers of the coupling constant in the case of an $N$-dimensional potential with two degenerate minima. The asymptotic behavior of these coefficients at high orders of perturbation theory is discussed.
Received: 10.10.1982
English version:
Theoretical and Mathematical Physics, 1983, Volume 56, Issue 3, Pages 871–878
DOI: https://doi.org/10.1007/BF01086254
Bibliographic databases:
Language: Russian
Citation: A. V. Kudinov, M. A. Smondyrev, “Quantum-mechanical oscillator with arbitrary anharmonicity: $1/N$ Expansion and perturbation theory”, TMF, 56:3 (1983), 357–367; Theoret. and Math. Phys., 56:3 (1983), 871–878
Citation in format AMSBIB
\Bibitem{KudSmo83}
\by A.~V.~Kudinov, M.~A.~Smondyrev
\paper Quantum-mechanical oscillator with arbitrary anharmonicity: $1/N$~Expansion and perturbation theory
\jour TMF
\yr 1983
\vol 56
\issue 3
\pages 357--367
\mathnet{http://mi.mathnet.ru/tmf2219}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=721308}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 56
\issue 3
\pages 871--878
\crossref{https://doi.org/10.1007/BF01086254}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SL29700004}
Linking options:
  • https://www.mathnet.ru/eng/tmf2219
  • https://www.mathnet.ru/eng/tmf/v56/i3/p357
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :224
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024