Abstract:
We use analytic methods to analyze the discrete spectrum for the problem
$(Z_1eZ_2)_2$ in the united-atom limit $(R\ll1)$ and obtain asymptotic
expansions for the quantum defect and energy terms of the system
$(Z_1eZ_2)_2$ at small intercenter distances $R$ up to terms of the order
$O(R^6)$. We investigate the effect of the dimensionality factor on the energy
spectrum of the hydrogen molecular ion H$^+_2$.
Keywords:
planar problem of two Coulomb centers, boundary layer phenomena, confluent Heun equation, Mathieu functions, Ince equation.
Citation:
D. I. Bondar, M. Gnatich, V. Yu. Lazur, “Two-dimensional problem of two Coulomb centers at small intercenter distances”, TMF, 148:2 (2006), 269–287; Theoret. and Math. Phys., 148:2 (2006), 1100–1116
\Bibitem{BonGnaLaz06}
\by D.~I.~Bondar, M.~Gnatich, V.~Yu.~Lazur
\paper Two-dimensional problem of two Coulomb centers at small intercenter distances
\jour TMF
\yr 2006
\vol 148
\issue 2
\pages 269--287
\mathnet{http://mi.mathnet.ru/tmf2085}
\crossref{https://doi.org/10.4213/tmf2085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283698}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148.1100B}
\elib{https://elibrary.ru/item.asp?id=9312054}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 2
\pages 1100--1116
\crossref{https://doi.org/10.1007/s11232-006-0104-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240375300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747277727}
Linking options:
https://www.mathnet.ru/eng/tmf2085
https://doi.org/10.4213/tmf2085
https://www.mathnet.ru/eng/tmf/v148/i2/p269
This publication is cited in the following 11 articles:
Khmara V.M., Hnatic M., Lazur V.Yu., Reity O.K., “Quasicrossings of Potential Curves in the Two-Coulomb-Center Problem”, Eur. Phys. J. D, 72:2 (2018), 39
M. Hnatich, V. M. Khmara, V. Yu. Lazur, O. K. Reity, “The WKB method for the quantum mechanical two-Coulomb-center problem”, Theoret. and Math. Phys., 190:3 (2017), 345–358
M. Hnatič, V.M. Khmara, V.Yu. Lazur, O.K. Reity, Gh. Adam, J. Buša, M. Hnatič, “Quasiclassical Study of the Quantum Mechanical Two-Coulomb-Centre Problem”, EPJ Web of Conferences, 108 (2016), 02028
I.V. Simenog, V.V. Mikhnyuk, Yu.M. Bidasyuk, “Structure and Electrochemical Properties of Aqueous Suspensions of Functionalized Single- and Multiwalled Carbon Nanotubes”, Ukr. J. Phys., 59:4 (2014), 439
I.V. Simenog, V.V. Mikhnyuk, M.V. Kuzmenko, “The Conditions of Stability of Two-Dimensional Quantum Systems of Three Charged Particles”, Ukr. J. Phys., 58:3 (2013), 289
Gonzalez Leon M.A. Mateos Guilarte J. Senosiain M.J. de la Torre Mayado M., “On the Supersymmetric Spectra of Two Planar Integrable Quantum Systems”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, ed. AcostaHumanez P. Finkel F. Kamran N. Olver P., Amer Mathematical Soc, 2012, 73–113
Guseinov I, Aydin R, Bagci A, “Application of complete orthonormal sets of psi(alpha)-exponential-type orbitals to accurate ground and excited states calculations of one-electron diatomic molecules using single-zeta approximation”, Chinese Physics Letters, 25:8 (2008), 2841–2844
D. I. Bondar, M. Hnatich, V. Yu. Lazur, “Symbolic computations for the two-Coulomb-centers problem in the space of arbitrary dimension”, Phys. Part. Nuclei Lett., 5:3 (2008), 255
Bondar DI, Hnatich M, Lazur VY, “The two Coulomb centres problem at small intercentre separations in the space of arbitrary dimension”, Journal of Physics A-Mathematical and Theoretical, 40:8 (2007), 1791–1807
Bondarchuk VV, Shvab IM, Bondar DI, et al, “Simple model of scalar-vector interaction for the relativistic two-center problem”, Physical Review A, 76:6 (2007), 062507
M. A. González León, J. Mateos Guilarte, M. de la Torre Mayado, “Two-Dimensional Supersymmetric Quantum Mechanics: Two Fixed Centers of Force”, SIGMA, 3 (2007), 124, 24 pp.