Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 148, Number 2, Pages 249–268
DOI: https://doi.org/10.4213/tmf2084
(Mi tmf2084)
 

This article is cited in 7 scientific papers (total in 7 papers)

Classical and quantum integrability of Hamiltonians without scattering states

A. Enciso, D. Peralta-Salas

Universidad Complutense, Departamento de Fisica Teorica II
Full-text PDF (462 kB) Citations (7)
References:
Abstract: We establish that every quantum Hamiltonian without scattering states has a complete family of conserved quantities independently of the dimension of the system. This result leads to a comparison of the general properties of classical and quantum integrable systems. We discuss several relevant examples and an application to the statistical distribution of energies. As a spin-off, we obtain additional support for the Berry–Tabor conjecture without taking the semiclassical limit into account.
Keywords: quantum mechanics, integrability, spectral theory, Berry–Tabor conjecture.
Received: 28.09.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 148, Issue 2, Pages 1086–1099
DOI: https://doi.org/10.1007/s11232-006-0103-8
Bibliographic databases:
Language: Russian
Citation: A. Enciso, D. Peralta-Salas, “Classical and quantum integrability of Hamiltonians without scattering states”, TMF, 148:2 (2006), 249–268; Theoret. and Math. Phys., 148:2 (2006), 1086–1099
Citation in format AMSBIB
\Bibitem{EncPer06}
\by A.~Enciso, D.~Peralta-Salas
\paper Classical and quantum integrability of Hamiltonians without scattering states
\jour TMF
\yr 2006
\vol 148
\issue 2
\pages 249--268
\mathnet{http://mi.mathnet.ru/tmf2084}
\crossref{https://doi.org/10.4213/tmf2084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283697}
\zmath{https://zbmath.org/?q=an:1177.81058}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148.1086E}
\elib{https://elibrary.ru/item.asp?id=9312053}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 2
\pages 1086--1099
\crossref{https://doi.org/10.1007/s11232-006-0103-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240375300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747176587}
Linking options:
  • https://www.mathnet.ru/eng/tmf2084
  • https://doi.org/10.4213/tmf2084
  • https://www.mathnet.ru/eng/tmf/v148/i2/p249
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:744
    Full-text PDF :270
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024