Abstract:
We describe the four most famous versions of the classical canonical
formalism in the Einstein theory of gravity: the Arnovitt–Deser–Misner
formalism, the Faddeev–Popov formalism, the frame formalism in the usual
form, and the frame formalism in the form best suited for constructing the
loop theory of gravity, which is now being developed. We present the
canonical transformations relating these formalisms.
Citation:
V. A. Franke, “Different canonical formulations of Einstein's theory of gravity”, TMF, 148:1 (2006), 143–160; Theoret. and Math. Phys., 148:1 (2006), 995–1010
\Bibitem{Fra06}
\by V.~A.~Franke
\paper Different canonical formulations of Einstein's theory of gravity
\jour TMF
\yr 2006
\vol 148
\issue 1
\pages 143--160
\mathnet{http://mi.mathnet.ru/tmf2065}
\crossref{https://doi.org/10.4213/tmf2065}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283655}
\zmath{https://zbmath.org/?q=an:1177.83021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148..995F}
\elib{https://elibrary.ru/item.asp?id=9277368}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 1
\pages 995--1010
\crossref{https://doi.org/10.1007/s11232-006-0096-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240007800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746149310}
Linking options:
https://www.mathnet.ru/eng/tmf2065
https://doi.org/10.4213/tmf2065
https://www.mathnet.ru/eng/tmf/v148/i1/p143
This publication is cited in the following 6 articles:
Sheykin A., Solovyev D., Sukhanov V., Paston S., “Modifications of Gravity Via Differential Transformations of Field Variables”, Symmetry-Basel, 12:2 (2020), 240
Contreras E., Leal L., “Abelian Ashtekar Formulation From the Adm Action”, Int. J. Mod. Phys. D, 23:5 (2014), 1450047
Kiriushcheva N., Kuzmin S.V., “The Hamiltonian formulation of general relativity: myths and reality”, Central European Journal of Physics, 9:3 (2011), 576–615
Kiriushcheva N., Kuzmin S.V., “The Hamiltonian of Einstein affine-metric formulation of General Relativity”, Eur. Phys. J. C Part Fields, 70:1-2 (2010), 389–422
Richter R., “Symplectic time integrators for numerical general relativity”, Physics and Mathematics of Gravitation, AIP Conference Proceedings, 1122, 2009, 376–379
Richter R., Lubich C., “Free and constrained symplectic integrators for numerical general relativity”, Classical Quantum Gravity, 25:22 (2008), 225018, 21 pp.