Abstract:
We discuss the specificity of charge renormalization in Yang–Mills theory.
We show that the values of the running coupling constant in dimensional
regularization and in momentum truncation coincide. Dimensional transmutation
is interpreted as replacing the dimensionless coupling constant with a
dimensional invariant of the renormalization group equation.
Keywords:
dimensional transmutation, renormalization group equations, dimensional regularization, momentum truncation.
Citation:
L. D. Faddeev, “Notes on divergences and dimensional transmutation in Yang–Mills theory”, TMF, 148:1 (2006), 133–142; Theoret. and Math. Phys., 148:1 (2006), 986–994
\Bibitem{Fad06}
\by L.~D.~Faddeev
\paper Notes on divergences and dimensional transmutation in Yang--Mills theory
\jour TMF
\yr 2006
\vol 148
\issue 1
\pages 133--142
\mathnet{http://mi.mathnet.ru/tmf2064}
\crossref{https://doi.org/10.4213/tmf2064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283654}
\zmath{https://zbmath.org/?q=an:1177.81105}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148..986F}
\elib{https://elibrary.ru/item.asp?id=9277367}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 1
\pages 986--994
\crossref{https://doi.org/10.1007/s11232-006-0095-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240007800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746118755}
Linking options:
https://www.mathnet.ru/eng/tmf2064
https://doi.org/10.4213/tmf2064
https://www.mathnet.ru/eng/tmf/v148/i1/p133
This publication is cited in the following 26 articles:
T. A. Bolokhov, “Correlation functions of two 3-dimensional transverse potentials with power singularities”, Zap. nauchn. sem. POMI, 532 (2024), 109–118
Amin Akhavan, “The constrained state of minimum energy and the effective equation of motion”, Int. J. Mod. Phys. A, 38:15n16 (2023)
T. A. Bolokhov, “Pauli–Villars Regularization for Some Models with Singular Perturbations”, J Math Sci, 275:3 (2023), 259
T. A. Bolokhov, “Infrared Extensions of the Quadratic form of the Ground State of Scalar Field Theory”, J Math Sci, 264:3 (2022), 244
T. A. Bolokhov, “Regulyarizatsiya Pauli–Villarsa dlya nekotorykh modelei s singulyarnym vzaimodeistviem”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 28, Zap. nauchn. sem. POMI, 509, POMI, SPb., 2021, 54–70
Liu Ya., Yu Y.-C., Chen Sh., “Three-Body Bound States of Two Bosons and One Impurity in One Dimension”, Phys. Rev. A, 104:3 (2021), 033303
Nedelko S., Voronin V., “Energy-Driven Disorder in Mean Field Qcd”, Phys. Rev. D, 103:11 (2021), 114021
T. A. Bolokhov, “Quantum Hamiltonian Eigenstates for a Free Transverse Field”, J Math Sci, 257:4 (2021), 476
T. A. Bolokhov, “Infrakrasnye rasshireniya kvadratichnoi formy osnovnogo sostoyaniya skalyarnoi teorii polya”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 27, Zap. nauchn. sem. POMI, 494, POMI, SPb., 2020, 64–74
Savvidy G., “From Heisenberg-Euler Lagrangian to the Discovery of Chromomagnetic Gluon Condensation”, Eur. Phys. J. C, 80:2 (2020), 165
T. A. Bolokhov, “Sobstvennye sostoyaniya dlya kvantovogo gamiltoniana svobodnogo poperechnogo polya”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 26, Zap. nauchn. sem. POMI, 487, POMI, SPb., 2019, 78–99
Ivanov A.V., Xxth International Seminar on High Energy Physics (Quarks-2018), Epj Web of Conferences, 191, ed. Volkova V. Zhezher Y. Levkov D. Rubakov V. Matveev V., E D P Sciences, 2018
L. A. Takhtajan, A. Yu. Alekseev, I. Ya. Aref'eva, M. A. Semenov-Tian-Shansky, E. K. Sklyanin, F. A. Smirnov, S. L. Shatashvili, “Scientific heritage of L. D. Faddeev. Survey of papers”, Russian Math. Surveys, 72:6 (2017), 977–1081
Carlone R., Correggi M., Figari R., “Two-Dimensional Time-Dependent Point Interactions”, Functional Analysis and Operator Theory For Quantum Physics: the Pavel Exner Anniversary Volume, EMS Ser. Congr. Rep., eds. Dittrich J., Kovarik H., Laptev A., Eur. Math. Soc., 2017, 189–211
A. V. Ivanov, “About dimensional regularization in the Yang–Mills theory”, J. Math. Sci. (N. Y.), 238:6 (2019), 862–869
Zinovjev G.M., Molodtsov S.V., “Fluctuation instability of the Dirac Sea in quark models of strong interactions”, Phys. Atom. Nuclei, 79:2 (2016), 278–284
Bagaev A.A. Pis'mak Yu.M., “The 0D Quantum Field Theory: Multiple Integrals Via Background Field Formalism”, Proceedings of the International Conference on Days on Diffraction 2016 (Dd), ed. Motygin O. Kiselev A. Kapitanova P. Goray L. Kazakov A. Kirpichnikova A., IEEE, 2016, 41–45
Zinov'ev G.M., Molodtsov S.V., “Quark Ensembles With the Infinite Correlation Length”, J. Exp. Theor. Phys., 120:1 (2015), 57–72
L. D. Faddeev, “A couple of methodological comments on the quantum Yang–Mills
theory”, Theoret. and Math. Phys., 181:3 (2014), 1638–1642
Bagaev A.A., “Effektivnoe deistvie v formalizme fonovogo polya”, Vestnik sankt-peterburgskogo universiteta. seriya 4: fizika. khimiya, 2012, no. 3, 56–65
An effective action in the background field formalism /