Abstract:
We find analogues of the generalized two-dimensional Toda chains of the CN and
˜CN series with three discrete independent variables and give Lax pairs for these chains.
This publication is cited in the following 8 articles:
Sergey V Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204
D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69
Habibullin I.T., Khakimova A.R., Poptsova M.N., “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A-Math. Theor., 49:3 (2016), 035202
S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theoret. and Math. Phys., 182:2 (2015), 189–210
Rustem Garifullin, Ismagil Habibullin, Marina Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 062, 33 pp.
Habibullin I., Zheltukhin K., Yangubaeva M., “Cartan matrices and integrable lattice Toda field equations”, J. Phys. A: Math. Theor., 44:46 (2011), 465202
Habibullin I., Zheltukhina N., Sakieva A., “Discretization of hyperbolic type Darboux integrable equations preserving integrability”, J Math Phys, 52:9 (2011), 093507
V. L. Vereshchagin, “Darboux-integrable discrete systems”, Theoret. and Math. Phys., 156:2 (2008), 1142–1153