Abstract:
We show that any pair of compatible Lie brackets with a common invariant form produces a nonconstant solution of the classical Yang–Baxter equation. We describe the corresponding Poisson brackets, Manin triples, and Lie bialgebras. It turns out that all bialgebras associated with the solutions found by Belavin and Drinfeld are isomorphic to some bialgebras generated by our solutions. For any compatible pair, we construct a double with a common invariant form and find the corresponding solution of the quantum Yang–Baxter equation for this double.
Citation:
I. Z. Golubchik, V. V. Sokolov, “Compatible Lie Brackets and the Yang–Baxter Equation”, TMF, 146:2 (2006), 195–207; Theoret. and Math. Phys., 146:2 (2006), 159–169
Manuel Ladra, Bernardo Leite da Cunha, Samuel A. Lopes, “A classification of nilpotent compatible Lie algebras”, Rend. Circ. Mat. Palermo, II. Ser, 74:1 (2025)
芸文 宋, “Compatiable Rota-Baxter Jordan Algebra”, PM, 15:01 (2025), 282
Taoufik Chtioui, Apurba Das, Sami Mabrouk, “(Co)homology of compatible associative algebras”, Communications in Algebra, 52:2 (2024), 582
Xinyue Wang, Yao Ma, Liangyun Chen, “Cohomology and Deformations of Compatible Lie Triple Systems”, Mediterr. J. Math., 21:2 (2024)
Shuai Hou, Yunhe Sheng, Yanqiu Zhou, “Deformations, cohomologies and abelian extensions of compatible 3-Lie algebras”, Journal of Geometry and Physics, 202 (2024), 105218
Shanshan Liu, Liangyun Chen, “Deformations and abelian extensions of compatible pre-Lie algebras”, Journal of Geometry and Physics, 2024, 105335
Hani Abdelwahab, Ivan Kaygorodov, Abdenacer Makhlouf, “The Algebraic and Geometric Classification of Compatible Pre-Lie Algebras”, SIGMA, 20 (2024), 107, 20 pp.
Apurba Das, “Cohomology and deformations of compatible Hom-Lie algebras”, Journal of Geometry and Physics, 192 (2023), 104951
Jiefeng Liu, Yunhe Sheng, Chengming Bai, “Maurer-Cartan characterizations and cohomologies of compatible Lie algebras”, Sci. China Math., 66:6 (2023), 1177
Vsevolod Gubarev, “Universal enveloping algebra of a pair of compatible Lie brackets”, Int. J. Algebra Comput., 32:07 (2022), 1335
Apurba Das, “Compatible L∞-algebras”, Journal of Algebra, 610 (2022), 241
Dobrogowska A., Jakimowicz G., “Generalization of the Concept of Classical R-Matrix to Lie Algebroids”, J. Geom. Phys., 165 (2021), 104227
Liu J., Bai Ch., Sheng Yu., “Noncommutative Poisson Bialgebras”, J. Algebra, 556 (2020), 35–66
Wu M., “Double Constructions of Compatible Associative Algebras”, Algebr. Colloq., 26:3 (2019), 479–494
Dobrogowska A., “R-Matrix, Lax pair, and Multiparameter Decompositions of Lie Algebras”, J. Math. Phys., 56:11 (2015), 113508