Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 146, Number 1, Pages 161–171
DOI: https://doi.org/10.4213/tmf2016
(Mi tmf2016)
 

This article is cited in 14 scientific papers (total in 14 papers)

Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation

S. Yu. Vernov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
References:
Abstract: We consider the cubic complex Ginzburg–Landau equation. Using Hone's method, based on formal Laurent-series solutions and the residue theorem, we prove the absence of elliptic standing-wave solutions of this equation. This result complements a result by Hone, who proved the nonexistence of elliptic traveling-wave solutions. We show that it is more efficient to apply Hone's method to a system of polynomial differential equations rather than to an equivalent differential equation.
Keywords: standing wave, elliptic function, Laurent series, residue theorem, cubic complex Ginzburg–Landau equation.
English version:
Theoretical and Mathematical Physics, 2006, Volume 146, Issue 1, Pages 131–139
DOI: https://doi.org/10.1007/s11232-006-0013-9
Bibliographic databases:
Language: Russian
Citation: S. Yu. Vernov, “Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation”, TMF, 146:1 (2006), 161–171; Theoret. and Math. Phys., 146:1 (2006), 131–139
Citation in format AMSBIB
\Bibitem{Ver06}
\by S.~Yu.~Vernov
\paper Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation
\jour TMF
\yr 2006
\vol 146
\issue 1
\pages 161--171
\mathnet{http://mi.mathnet.ru/tmf2016}
\crossref{https://doi.org/10.4213/tmf2016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243410}
\zmath{https://zbmath.org/?q=an:1177.35232}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..131V}
\elib{https://elibrary.ru/item.asp?id=9213643}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 1
\pages 131--139
\crossref{https://doi.org/10.1007/s11232-006-0013-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235509200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31044436151}
Linking options:
  • https://www.mathnet.ru/eng/tmf2016
  • https://doi.org/10.4213/tmf2016
  • https://www.mathnet.ru/eng/tmf/v146/i1/p161
  • This publication is cited in the following 14 articles:
    1. H. W. Schürmann, V. S. Serov, “On the existence of certain elliptic solutions of the cubically nonlinear Schrödinger equation”, Theoret. and Math. Phys., 219:1 (2024), 557–566  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Robert Conte, Micheline Musette, Tuen Wai Ng, Chengfa Wu, “All meromorphic traveling waves of cubic and quintic complex Ginzburg-Landau equations”, Physics Letters A, 481 (2023), 129024  crossref
    3. M. V. Demina, N. A. Kudryashov, “Dvoyako-periodicheskie meromorfnye resheniya avtonomnykh nelineinykh differentsialnykh uravnenii”, Model. i analiz inform. sistem, 21:5 (2014), 49–60  mathnet
    4. M. V. Demina, N. A. Kudryashov, “Doubly periodic meromorphic solutions of autonomous nonlinear differential equations”, Aut. Control Comp. Sci., 48:7 (2014), 633  crossref
    5. Kudryashov N.A., Sinelshchikov D.I., “Elliptic solutions for a family of fifth order nonlinear evolution equations”, Applied Mathematics and Computation, 218:12 (2012), 6991–6997  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Kudryashov N.A., Sinelshchikov D.I., “Exact solutions of the Swift-Hohenberg equation with dispersion”, Commun Nonlinear Sci Numer Simul, 17:1 (2012), 26–34  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    7. Kudryashov N.A., Sinelshchikov D.I., Demina M.V., “Exact solutions of the generalized Bretherton equation”, Phys. Lett. A, 375:7 (2011), 1074–1079  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    8. Demina M.V., Kudryashov N.A., “Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations”, Commun. Nonlinear Sci. Numer. Simul., 16:3 (2011), 1127–1134  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    9. Demina M.V., Kudryashov N.A., “On elliptic solutions of nonlinear ordinary differential equations”, Applied Mathematics and Computation, 217:23 (2011), 9849–9853  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Kudryashov N.A., Ryabov P.N., Sinelshchikov D.I., “Nonlinear waves in media with fifth order dispersion”, Phys Lett A, 375:20 (2011), 2051–2055  crossref  zmath  adsnasa  isi  elib  scopus  scopus
    11. Demina M.V., Kudryashov N.A., “From Laurent series to exact meromorphic solutions: The Kawahara equation”, Phys. Lett. A, 374:39 (2010), 4023–4029  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    12. Vernov S.Yu., “Elliptic solutions of the quintic complex one-dimensional Ginzburg-Landau equation”, J. Phys. A, 40:32 (2007), 9833–9844  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    13. Vernov S.Yu., “Construction of Special Solutions for Nonintegrable Systems”, J. Nonlinear Math. Phys., 13:1 (2006), 50–63  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Vernov S., “Interdependence Between the Laurent-Series and Elliptic Solutions of Nonintegrable Systems”, Computer Algebra in Scienfific Computing, Proceedings, Lecture Notes in Computer Science, 3718, eds. Ganzha V., Mayr E., Vorozhtsov E., Springer-Verlag Berlin, 2005, 457–468  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:984
    Full-text PDF :291
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025