Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 146, Number 1, Pages 161–171
DOI: https://doi.org/10.4213/tmf2016
(Mi tmf2016)
 

This article is cited in 14 scientific papers (total in 14 papers)

Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation

S. Yu. Vernov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
References:
Abstract: We consider the cubic complex Ginzburg–Landau equation. Using Hone's method, based on formal Laurent-series solutions and the residue theorem, we prove the absence of elliptic standing-wave solutions of this equation. This result complements a result by Hone, who proved the nonexistence of elliptic traveling-wave solutions. We show that it is more efficient to apply Hone's method to a system of polynomial differential equations rather than to an equivalent differential equation.
Keywords: standing wave, elliptic function, Laurent series, residue theorem, cubic complex Ginzburg–Landau equation.
English version:
Theoretical and Mathematical Physics, 2006, Volume 146, Issue 1, Pages 131–139
DOI: https://doi.org/10.1007/s11232-006-0013-9
Bibliographic databases:
Language: Russian
Citation: S. Yu. Vernov, “Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation”, TMF, 146:1 (2006), 161–171; Theoret. and Math. Phys., 146:1 (2006), 131–139
Citation in format AMSBIB
\Bibitem{Ver06}
\by S.~Yu.~Vernov
\paper Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation
\jour TMF
\yr 2006
\vol 146
\issue 1
\pages 161--171
\mathnet{http://mi.mathnet.ru/tmf2016}
\crossref{https://doi.org/10.4213/tmf2016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243410}
\zmath{https://zbmath.org/?q=an:1177.35232}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..131V}
\elib{https://elibrary.ru/item.asp?id=9213643}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 1
\pages 131--139
\crossref{https://doi.org/10.1007/s11232-006-0013-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235509200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31044436151}
Linking options:
  • https://www.mathnet.ru/eng/tmf2016
  • https://doi.org/10.4213/tmf2016
  • https://www.mathnet.ru/eng/tmf/v146/i1/p161
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024