Abstract:
We consider the cubic complex Ginzburg–Landau equation. Using Hone's method, based on formal Laurent-series solutions and the residue theorem, we prove the absence of elliptic standing-wave solutions of this equation. This result complements a result by Hone, who proved the nonexistence of elliptic traveling-wave solutions. We show that it is more efficient to apply Hone's method to a system of polynomial differential equations rather than to an equivalent differential equation.
Citation:
S. Yu. Vernov, “Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation”, TMF, 146:1 (2006), 161–171; Theoret. and Math. Phys., 146:1 (2006), 131–139
\Bibitem{Ver06}
\by S.~Yu.~Vernov
\paper Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg--Landau Equation
\jour TMF
\yr 2006
\vol 146
\issue 1
\pages 161--171
\mathnet{http://mi.mathnet.ru/tmf2016}
\crossref{https://doi.org/10.4213/tmf2016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243410}
\zmath{https://zbmath.org/?q=an:1177.35232}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..131V}
\elib{https://elibrary.ru/item.asp?id=9213643}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 1
\pages 131--139
\crossref{https://doi.org/10.1007/s11232-006-0013-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235509200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31044436151}
Linking options:
https://www.mathnet.ru/eng/tmf2016
https://doi.org/10.4213/tmf2016
https://www.mathnet.ru/eng/tmf/v146/i1/p161
This publication is cited in the following 14 articles:
H. W. Schürmann, V. S. Serov, “On the existence of certain elliptic solutions of the cubically nonlinear Schrödinger equation”, Theoret. and Math. Phys., 219:1 (2024), 557–566
Robert Conte, Micheline Musette, Tuen Wai Ng, Chengfa Wu, “All meromorphic traveling waves of cubic and quintic complex Ginzburg-Landau equations”, Physics Letters A, 481 (2023), 129024
M. V. Demina, N. A. Kudryashov, “Dvoyako-periodicheskie meromorfnye resheniya avtonomnykh nelineinykh differentsialnykh uravnenii”, Model. i analiz inform. sistem, 21:5 (2014), 49–60
M. V. Demina, N. A. Kudryashov, “Doubly periodic meromorphic solutions of autonomous nonlinear differential equations”, Aut. Control Comp. Sci., 48:7 (2014), 633
Kudryashov N.A., Sinelshchikov D.I., “Elliptic solutions for a family of fifth order nonlinear evolution equations”, Applied Mathematics and Computation, 218:12 (2012), 6991–6997
Kudryashov N.A., Sinelshchikov D.I., “Exact solutions of the Swift-Hohenberg equation with dispersion”, Commun Nonlinear Sci Numer Simul, 17:1 (2012), 26–34
Kudryashov N.A., Sinelshchikov D.I., Demina M.V., “Exact solutions of the generalized Bretherton equation”, Phys. Lett. A, 375:7 (2011), 1074–1079
Demina M.V., Kudryashov N.A., “On elliptic solutions of nonlinear ordinary differential equations”, Applied Mathematics and Computation, 217:23 (2011), 9849–9853
Kudryashov N.A., Ryabov P.N., Sinelshchikov D.I., “Nonlinear waves in media with fifth order dispersion”, Phys Lett A, 375:20 (2011), 2051–2055
Demina M.V., Kudryashov N.A., “From Laurent series to exact meromorphic solutions: The Kawahara equation”, Phys. Lett. A, 374:39 (2010), 4023–4029
Vernov S.Yu., “Elliptic solutions of the quintic complex one-dimensional Ginzburg-Landau equation”, J. Phys. A, 40:32 (2007), 9833–9844
Vernov S.Yu., “Construction of Special Solutions for Nonintegrable Systems”, J. Nonlinear Math. Phys., 13:1 (2006), 50–63
Vernov S., “Interdependence Between the Laurent-Series and Elliptic Solutions of Nonintegrable Systems”, Computer Algebra in Scienfific Computing, Proceedings, Lecture Notes in Computer Science, 3718, eds. Ganzha V., Mayr E., Vorozhtsov E., Springer-Verlag Berlin, 2005, 457–468