Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 146, Number 1, Pages 146–160
DOI: https://doi.org/10.4213/tmf2015
(Mi tmf2015)
 

This article is cited in 10 scientific papers (total in 10 papers)

The $XX$ and Ising Limits in Integral Formulas for Finite-Temperature Correlation Functions of the $XXZ$ Chain

F. Gohmann, A. Seel

University of Wuppertal
References:
Abstract: We consider a multiple-integral representation for a one-parameter generating function of the finite temperature $S^z$$S^z$ correlation functions of the antiferromagnetic spin-$1/2$ $XXZ$ chain in the $XX$ limit and in the Ising limit. We show how the multiple integrals reduce to single integrals in these limits, thus reproducing known results.
Keywords: quantum spin chain, exact finite-temperature correlation functions, $XX$ model.
English version:
Theoretical and Mathematical Physics, 2006, Volume 146, Issue 1, Pages 119–130
DOI: https://doi.org/10.1007/s11232-006-0012-x
Bibliographic databases:
Language: Russian
Citation: F. Gohmann, A. Seel, “The $XX$ and Ising Limits in Integral Formulas for Finite-Temperature Correlation Functions of the $XXZ$ Chain”, TMF, 146:1 (2006), 146–160; Theoret. and Math. Phys., 146:1 (2006), 119–130
Citation in format AMSBIB
\Bibitem{GohSee06}
\by F.~Gohmann, A.~Seel
\paper The $XX$ and Ising Limits in Integral Formulas for Finite-Temperature Correlation Functions of the $XXZ$ Chain
\jour TMF
\yr 2006
\vol 146
\issue 1
\pages 146--160
\mathnet{http://mi.mathnet.ru/tmf2015}
\crossref{https://doi.org/10.4213/tmf2015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243409}
\zmath{https://zbmath.org/?q=an:1177.82040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..119G}
\elib{https://elibrary.ru/item.asp?id=9213642}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 1
\pages 119--130
\crossref{https://doi.org/10.1007/s11232-006-0012-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235509200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31144432395}
Linking options:
  • https://www.mathnet.ru/eng/tmf2015
  • https://doi.org/10.4213/tmf2015
  • https://www.mathnet.ru/eng/tmf/v146/i1/p146
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:500
    Full-text PDF :219
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024