Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 146, Number 1, Pages 65–76
DOI: https://doi.org/10.4213/tmf2009
(Mi tmf2009)
 

This article is cited in 34 scientific papers (total in 34 papers)

Izergin–Korepin Determinant at a Third Root of Unity

Yu. G. Stroganov

Institute for High Energy Physics
References:
Abstract: We consider the partition function of the inhomogeneous six-vertex model defined on an $(n\times n)$ square lattice. This function depends on $2n$ spectral parameters $x_i$ and $y_i$ attached to the respective horizontal and vertical lines. In the case of the domain-wall boundary conditions, it is given by the Izergin–Korepin determinant. For $q$ being an $N$-th root of unity, the partition function satisfies a special linear functional equation. This equation is particularly simple and useful when the crossing parameter is $\eta=2\pi/3$, i. e., $N = 3$. It is well known, for example, that the partition function is symmetric in both the $\{x\}$ and the $\{y\}$ variables. Using the abovementioned equation, we find that in the case of $\eta=2\pi/3$, it is symmetric in the union $\{x\}\cup\{y\}$. In addition, this equation can be used to solve some of the problems related to enumerating alternating-sign matrices. In particular, we reproduce the refined alternating-sign matrix enumeration discovered by Mills, Robbins, and Rumsey and proved by Zeilberger, and we obtain formulas for the doubly refined enumeration of these matrices.
Keywords: alternating-sign matrices, enumeration, square-ice model.
English version:
Theoretical and Mathematical Physics, 2006, Volume 146, Issue 1, Pages 53–62
DOI: https://doi.org/10.1007/s11232-006-0006-8
Bibliographic databases:
Language: Russian
Citation: Yu. G. Stroganov, “Izergin–Korepin Determinant at a Third Root of Unity”, TMF, 146:1 (2006), 65–76; Theoret. and Math. Phys., 146:1 (2006), 53–62
Citation in format AMSBIB
\Bibitem{Str06}
\by Yu.~G.~Stroganov
\paper Izergin--Korepin Determinant at a~Third Root of Unity
\jour TMF
\yr 2006
\vol 146
\issue 1
\pages 65--76
\mathnet{http://mi.mathnet.ru/tmf2009}
\crossref{https://doi.org/10.4213/tmf2009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243403}
\zmath{https://zbmath.org/?q=an:1177.82042}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146...53S}
\elib{https://elibrary.ru/item.asp?id=9213636}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 1
\pages 53--62
\crossref{https://doi.org/10.1007/s11232-006-0006-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235509200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31044432338}
Linking options:
  • https://www.mathnet.ru/eng/tmf2009
  • https://doi.org/10.4213/tmf2009
  • https://www.mathnet.ru/eng/tmf/v146/i1/p65
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:841
    Full-text PDF :220
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024