Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 146, Number 1, Pages 65–76
DOI: https://doi.org/10.4213/tmf2009
(Mi tmf2009)
 

This article is cited in 34 scientific papers (total in 34 papers)

Izergin–Korepin Determinant at a Third Root of Unity

Yu. G. Stroganov

Institute for High Energy Physics
References:
Abstract: We consider the partition function of the inhomogeneous six-vertex model defined on an (n×n)(n×n) square lattice. This function depends on 2n2n spectral parameters xixi and yiyi attached to the respective horizontal and vertical lines. In the case of the domain-wall boundary conditions, it is given by the Izergin–Korepin determinant. For qq being an NN-th root of unity, the partition function satisfies a special linear functional equation. This equation is particularly simple and useful when the crossing parameter is η=2π/3η=2π/3, i. e., N=3N=3. It is well known, for example, that the partition function is symmetric in both the {x}{x} and the {y}{y} variables. Using the abovementioned equation, we find that in the case of η=2π/3η=2π/3, it is symmetric in the union {x}{y}{x}{y}. In addition, this equation can be used to solve some of the problems related to enumerating alternating-sign matrices. In particular, we reproduce the refined alternating-sign matrix enumeration discovered by Mills, Robbins, and Rumsey and proved by Zeilberger, and we obtain formulas for the doubly refined enumeration of these matrices.
Keywords: alternating-sign matrices, enumeration, square-ice model.
English version:
Theoretical and Mathematical Physics, 2006, Volume 146, Issue 1, Pages 53–62
DOI: https://doi.org/10.1007/s11232-006-0006-8
Bibliographic databases:
Language: Russian
Citation: Yu. G. Stroganov, “Izergin–Korepin Determinant at a Third Root of Unity”, TMF, 146:1 (2006), 65–76; Theoret. and Math. Phys., 146:1 (2006), 53–62
Citation in format AMSBIB
\Bibitem{Str06}
\by Yu.~G.~Stroganov
\paper Izergin--Korepin Determinant at a~Third Root of Unity
\jour TMF
\yr 2006
\vol 146
\issue 1
\pages 65--76
\mathnet{http://mi.mathnet.ru/tmf2009}
\crossref{https://doi.org/10.4213/tmf2009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243403}
\zmath{https://zbmath.org/?q=an:1177.82042}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146...53S}
\elib{https://elibrary.ru/item.asp?id=9213636}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 1
\pages 53--62
\crossref{https://doi.org/10.1007/s11232-006-0006-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235509200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31044432338}
Linking options:
  • https://www.mathnet.ru/eng/tmf2009
  • https://doi.org/10.4213/tmf2009
  • https://www.mathnet.ru/eng/tmf/v146/i1/p65
  • This publication is cited in the following 34 articles:
    1. Samuel Belliard, Rodrigo Alves Pimenta, Nikita A. Slavnov, “Modified rational six vertex model on the rectangular lattice”, SciPost Phys., 16:1 (2024), 9–20  mathnet  crossref
    2. F. Colomo, A.G. Pronko, “Evaluation of integrals for the emptiness formation probability in the square-ice model”, Nuclear Physics B, 1004 (2024), 116565  crossref
    3. Fischer I. Saikia M.P., “Refined Enumeration of Symmetry Classes of Alternating Sign Matrices”, J. Comb. Theory Ser. A, 178 (2021), 105350  crossref  mathscinet  isi
    4. Ayyer A., Chhita S., “Correlations in Totally Symmetric Self-Complementary Plane Partitions”, Trans. London Math. Soc., 8:1 (2021), 493–526  crossref  isi
    5. Debin B., Ruelle Ph., “Factorization in the Multirefined Tangent Method”, J. Stat. Mech.-Theory Exp., 2021:10 (2021), 103201  crossref  mathscinet  isi
    6. Di Francesco Ph., “Twenty Vertex Model and Domino Tilings of the Aztec Triangle”, Electron. J. Comb., 28:4 (2021), P4.38  crossref  mathscinet  isi  scopus
    7. Aggarwal A., “Arctic Boundaries of the Ice Model on Three-Bundle Domains”, Invent. Math., 220:2 (2020), 611–671  crossref  mathscinet  isi
    8. Ayyer A. Behrend R.E. Fischer I., “Extreme Diagonally and Antidiagonally Symmetric Alternating Sign Matrices of Odd Order”, Adv. Math., 367 (2020), 107125  crossref  mathscinet  isi  scopus
    9. Ayyer A. Behrend R.E., “Factorization Theorems For Classical Group Characters, With Applications to Alternating Sign Matrices and Plane Partitions”, J. Comb. Theory Ser. A, 165 (2019), 78–105  crossref  mathscinet  isi  scopus
    10. Behrend R.E. Fischer I. Konvalinka M., “Diagonally and Antidiagonally Symmetric Alternating Sign Matrices of Odd Order”, Adv. Math., 315 (2017), 324–365  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Rosengren H., “Elliptic Pfaffians and solvable lattice models”, J. Stat. Mech.-Theory Exp., 2016, 083106  crossref  mathscinet  isi  elib  scopus
    12. de Gier J. Jacobsen J.L. Ponsaing A., “Finite-Size Corrections For Universal Boundary Entropy in Bond Percolation”, SciPost Phys., 1:2 (2016), UNSP 012  crossref  isi
    13. Rosengren H., “Special Polynomials Related To the Supersymmetric Eight-Vertex Model: a Summary”, Commun. Math. Phys., 340:3 (2015), 1143–1170  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    14. Gorin V. Panova G., “Asymptotics of Symmetric Polynomials With Applications To Statistical Mechanics and Representation Theory”, Ann. Probab., 43:6 (2015), 3052–3132  crossref  mathscinet  zmath  isi  scopus  scopus
    15. Tiago Fonseca, Ferenc Balogh, “The higher spin generalization of the 6-vertex model with domain wall boundary conditions and Macdonald polynomials”, J Algebr Comb, 41:3 (2015), 843  crossref
    16. Romik D., “Connectivity Patterns in Loop Percolation i: the Rationality Phenomenon and Constant Term Identities”, Commun. Math. Phys., 330:2 (2014), 499–538  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    17. Behrend R.E. Di Francesco Ph. Zinn-Justin P., “A Doubly-Refined Enumeration of Alternating Sign Matrices and Descending Plane Partitions”, J. Comb. Theory Ser. A, 120:2 (2013), 409–432  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    18. Behrend R.E., “Multiply-Refined Enumeration of Alternating Sign Matrices”, Adv. Math., 245 (2013), 439–499  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    19. Ayyer A. Romik D., “New Enumeration Formulas for Alternating Sign Matrices and Square Ice Partition Functions”, Adv. Math., 235 (2013), 161–186  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    20. Paul Zinn-Justin, Springer Proceedings in Mathematics & Statistics, 40, Symmetries, Integrable Systems and Representations, 2013, 599  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:892
    Full-text PDF :238
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025