Typesetting math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 146, Number 1, Pages 55–64
DOI: https://doi.org/10.4213/tmf2008
(Mi tmf2008)
 

This article is cited in 21 scientific papers (total in 21 papers)

Integrable Model of Interacting Elliptic Tops

A. V. Zotova, A. M. Levinb

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b P. P. Shirshov institute of Oceanology of RAS
References:
Abstract: We suggest a method for constructing a system of interacting elliptic tops. It is integrable and symplectomorphic to the Calogero–Moser model by construction.
Keywords: integrable systems, algebraic geometry, symplectic geometry.
English version:
Theoretical and Mathematical Physics, 2006, Volume 146, Issue 1, Pages 45–52
DOI: https://doi.org/10.1007/s11232-006-0005-9
Bibliographic databases:
Language: Russian
Citation: A. V. Zotov, A. M. Levin, “Integrable Model of Interacting Elliptic Tops”, TMF, 146:1 (2006), 55–64; Theoret. and Math. Phys., 146:1 (2006), 45–52
Citation in format AMSBIB
\Bibitem{ZotLev06}
\by A.~V.~Zotov, A.~M.~Levin
\paper Integrable Model of Interacting Elliptic Tops
\jour TMF
\yr 2006
\vol 146
\issue 1
\pages 55--64
\mathnet{http://mi.mathnet.ru/tmf2008}
\crossref{https://doi.org/10.4213/tmf2008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243402}
\zmath{https://zbmath.org/?q=an:1177.37061}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146...45Z}
\elib{https://elibrary.ru/item.asp?id=9213635}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 1
\pages 45--52
\crossref{https://doi.org/10.1007/s11232-006-0005-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235509200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31044434627}
Linking options:
  • https://www.mathnet.ru/eng/tmf2008
  • https://doi.org/10.4213/tmf2008
  • https://www.mathnet.ru/eng/tmf/v146/i1/p55
  • This publication is cited in the following 21 articles:
    1. E. S. Trunina, A. V. Zotov, “Multi-pole extension of the elliptic models of interacting integrable tops”, Theoret. and Math. Phys., 209:1 (2021), 1331–1356  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. Atalikov K. Zotov A., “Field Theory Generalizations of Two-Body Calogero-Moser Models in the Form of Landau-Lifshitz Equations”, J. Geom. Phys., 164 (2021), 104161  crossref  mathscinet  isi
    3. I. A. Sechin, A. V. Zotov, “Integrable system of generalized relativistic interacting tops”, Theoret. and Math. Phys., 205:1 (2020), 1291–1302  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. A. V. Zotov, “Relativistic interacting integrable elliptic tops”, Theoret. and Math. Phys., 201:2 (2019), 1565–1580  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Grekov A. Sechin I. Zotov A., “Generalized Model of Interacting Integrable Tops”, J. High Energy Phys., 2019, no. 10, 081  crossref  mathscinet  isi
    6. Grekov A. Zotov A., “On R-Matrix Valued Lax pairs For Calogero–Moser Models”, J. Phys. A-Math. Theor., 51:31 (2018), 315202  crossref  mathscinet  isi  scopus  scopus
    7. A. V. Zotov, “Calogero–Moser model and R-matrix identities”, Theoret. and Math. Phys., 197:3 (2018), 1755–1770  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Classification of isomonodromy problems on elliptic curves”, Russian Math. Surveys, 69:1 (2014), 35–118  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. Gorsky A. Zabrodin A. Zotov A., “Spectrum of Quantum Transfer Matrices via Classical Many-Body Systems”, J. High Energy Phys., 2014, no. 1, 070, 1–28  crossref  mathscinet  isi  scopus  scopus
    10. Levin A. Olshanetsky M. Zotov A., “Planck Constant as Spectral Parameter in Integrable Systems and Kzb Equations”, J. High Energy Phys., 2014, no. 10, 109  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Levin A. Olshanetsky M. Zotov A., “Classical Integrable Systems and Soliton Equations Related To Eleven-Vertex R-Matrix”, Nucl. Phys. B, 887 (2014), 400–422  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    12. Aminov G. Arthamonov S. Smirnov A. Zotov A., “Rational TOP and Its Classical R-Matrix”, J. Phys. A-Math. Theor., 47:30 (2014), 305207  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Levin A. Olshanetsky M. Zotov A., “Relativistic Classical Integrable Tops and Quantum R-Matrices”, J. High Energy Phys., 2014, no. 7, 012  crossref  isi  scopus  scopus
    14. Levin A. Olshanetsky M. Smirnov A. Zotov A., “Characteristic Classes of Sl(N, C)-Bundles and Quantum Dynamical Elliptic R-Matrices”, J. Phys. A-Math. Theor., 46:3 (2013), 035201  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    15. JETP Letters, 97:1 (2013), 45–51  mathnet  crossref  crossref  isi  elib  elib
    16. A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    17. Andrey M. Levin, Mikhail A. Olshanetsky, Andrey V. Smirnov, Andrei V. Zotov, “Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles”, SIGMA, 8 (2012), 095, 37 pp.  mathnet  crossref  mathscinet
    18. Levin A., Olshanetsky M., Smirnov A., Zotov A., “Characteristic Classes and Hitchin Systems. General Construction”, Commun. Math. Phys., 316:1 (2012), 1–44  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    19. Levin A., Olshanetsky M., Smirnov A., Zotov A., “Calogero–Moser Systems for Simple Lie Groups and Characteristic Classes of Bundles”, J. Geom. Phys., 62:8 (2012), 1810–1850  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    20. Andrei V. Zotov, “1+1 Gaudin Model”, SIGMA, 7 (2011), 067, 26 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:638
    Full-text PDF :279
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025