Abstract:
We suggest a method for constructing a system of interacting elliptic tops. It is integrable and symplectomorphic to the Calogero–Moser model by construction.
Citation:
A. V. Zotov, A. M. Levin, “Integrable Model of Interacting Elliptic Tops”, TMF, 146:1 (2006), 55–64; Theoret. and Math. Phys., 146:1 (2006), 45–52
This publication is cited in the following 21 articles:
E. S. Trunina, A. V. Zotov, “Multi-pole extension of the elliptic models of interacting integrable tops”, Theoret. and Math. Phys., 209:1 (2021), 1331–1356
Atalikov K. Zotov A., “Field Theory Generalizations of Two-Body Calogero-Moser Models in the Form of Landau-Lifshitz Equations”, J. Geom. Phys., 164 (2021), 104161
I. A. Sechin, A. V. Zotov, “Integrable system of generalized relativistic interacting tops”, Theoret. and Math. Phys., 205:1 (2020), 1291–1302
A. V. Zotov, “Relativistic interacting integrable elliptic tops”, Theoret. and Math. Phys., 201:2 (2019), 1565–1580
Grekov A. Sechin I. Zotov A., “Generalized Model of Interacting Integrable Tops”, J. High Energy Phys., 2019, no. 10, 081
Grekov A. Zotov A., “On R-Matrix Valued Lax pairs For Calogero–Moser Models”, J. Phys. A-Math. Theor., 51:31 (2018), 315202
A. V. Zotov, “Calogero–Moser model and R-matrix identities”, Theoret. and Math. Phys., 197:3 (2018), 1755–1770
A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Classification of isomonodromy problems on elliptic curves”, Russian Math. Surveys, 69:1 (2014), 35–118
Gorsky A. Zabrodin A. Zotov A., “Spectrum of Quantum Transfer Matrices via Classical Many-Body Systems”, J. High Energy Phys., 2014, no. 1, 070, 1–28
Levin A. Olshanetsky M. Zotov A., “Planck Constant as Spectral Parameter in Integrable Systems and Kzb Equations”, J. High Energy Phys., 2014, no. 10, 109
Levin A. Olshanetsky M. Zotov A., “Classical Integrable Systems and Soliton Equations Related To Eleven-Vertex R-Matrix”, Nucl. Phys. B, 887 (2014), 400–422
Aminov G. Arthamonov S. Smirnov A. Zotov A., “Rational TOP and Its Classical R-Matrix”, J. Phys. A-Math. Theor., 47:30 (2014), 305207
Levin A. Olshanetsky M. Zotov A., “Relativistic Classical Integrable Tops and Quantum R-Matrices”, J. High Energy Phys., 2014, no. 7, 012
Levin A. Olshanetsky M. Smirnov A. Zotov A., “Characteristic Classes of Sl(N, C)-Bundles and Quantum Dynamical Elliptic R-Matrices”, J. Phys. A-Math. Theor., 46:3 (2013), 035201
JETP Letters, 97:1 (2013), 45–51
A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338
Andrey M. Levin, Mikhail A. Olshanetsky, Andrey V. Smirnov, Andrei V. Zotov, “Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles”, SIGMA, 8 (2012), 095, 37 pp.
Levin A., Olshanetsky M., Smirnov A., Zotov A., “Characteristic Classes and Hitchin Systems. General Construction”, Commun. Math. Phys., 316:1 (2012), 1–44
Levin A., Olshanetsky M., Smirnov A., Zotov A., “Calogero–Moser Systems for Simple Lie Groups and Characteristic Classes of Bundles”, J. Geom. Phys., 62:8 (2012), 1810–1850
Andrei V. Zotov, “1+1 Gaudin Model”, SIGMA, 7 (2011), 067, 26 pp.