Abstract:
We construct a complex transformation S1C→S1 generalizing the known Hurwitz transformation in the Euclidean space for one-dimensional quantum mechanics. As in the case of the flat space, this transformation allows establishing the connection between the Coulomb problem and the oscillator problem with the Calogero–Sutherland potential added. We fully describe the motion in a Coulomb field in S1 and determine the energy spectrum and the wave functions with the correct normalizing constant.
Citation:
L. G. Mardoyan, G. S. Pogosyan, G. S. Pogosyan, A. N. Sisakyan, “Coulomb Problem in a One-Dimensional Space with Constant Positive Curvature”, TMF, 135:3 (2003), 427–433; Theoret. and Math. Phys., 135:3 (2003), 808–813
\Bibitem{MarPogSis03}
\by L.~G.~Mardoyan, G.~S.~Pogosyan, G.~S.~Pogosyan, A.~N.~Sisakyan
\paper Coulomb Problem in a One-Dimensional Space with Constant Positive Curvature
\jour TMF
\yr 2003
\vol 135
\issue 3
\pages 427--433
\mathnet{http://mi.mathnet.ru/tmf198}
\crossref{https://doi.org/10.4213/tmf198}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1984447}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 3
\pages 808--813
\crossref{https://doi.org/10.1023/A:1024078803869}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184367300006}
Linking options:
https://www.mathnet.ru/eng/tmf198
https://doi.org/10.4213/tmf198
https://www.mathnet.ru/eng/tmf/v135/i3/p427
This publication is cited in the following 4 articles:
Arsen Shutovskyi, Vasyl Sakhnyuk, Vadim Muliar, “Solving a singular integral equation for the one-dimensional Coulomb problem”, Phys. Scr., 98:8 (2023), 085219
Dunn, C, “Spectral geometry, homogeneous spaces and differential forms with finite Fourier series”, Journal of Physics A-Mathematical and Theoretical, 41:13 (2008), 135204
Pogosyan GS, Vicent LE, Wolf KB, “Quantum phase space for the one-dimensional hydrogen atom on the hyperbola”, Journal of Mathematical Physics, 46:7 (2005), 072108
Burdik C., Pogosyan G.S., “Two exactly-solvable problems in one-dimensional hyperbolic space”, Lie Theory and its Applications in Physics V, Proceedings, 2004, 294–300