Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 135, Number 3, Pages 434–451
DOI: https://doi.org/10.4213/tmf200
(Mi tmf200)
 

This article is cited in 6 scientific papers (total in 6 papers)

Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems

A. D. Mironovab

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Full-text PDF (290 kB) Citations (6)
References:
Abstract: Integrability in string/field theories is known to emerge when considering dynamics in the moduli space of physical theories. This implies that one must study the dynamics with respect to unusual time variables such as coupling constants or other quantities parameterizing the configuration space of physical theories. The dynamics given by variations of coupling constants can be considered as a canonical transformation or, infinitesimally, a Hamiltonian flow in the space of physical systems. We briefly consider an example of integrable mechanical systems. Then any function $T(\vec p,\vec q)$ generates a one-parameter family of integrable systems in the vicinity of a single system. For an integrable system with several coupling constants, the corresponding “Hamiltonians” $T_i(\vec p,\vec q)$ satisfy the Whitham equations and, after quantization (of the original system), become operators satisfying the zero-curvature condition in the coupling-constant space.
Keywords: string theory, quantum field theory, integrable systems.
English version:
Theoretical and Mathematical Physics, 2003, Volume 135, Issue 3, Pages 814–827
DOI: https://doi.org/10.1023/A:1024031020707
Bibliographic databases:
Language: Russian
Citation: A. D. Mironov, “Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems”, TMF, 135:3 (2003), 434–451; Theoret. and Math. Phys., 135:3 (2003), 814–827
Citation in format AMSBIB
\Bibitem{Mir03}
\by A.~D.~Mironov
\paper Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems
\jour TMF
\yr 2003
\vol 135
\issue 3
\pages 434--451
\mathnet{http://mi.mathnet.ru/tmf200}
\crossref{https://doi.org/10.4213/tmf200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1984448}
\zmath{https://zbmath.org/?q=an:1178.81229}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 3
\pages 814--827
\crossref{https://doi.org/10.1023/A:1024031020707}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184367300007}
Linking options:
  • https://www.mathnet.ru/eng/tmf200
  • https://doi.org/10.4213/tmf200
  • https://www.mathnet.ru/eng/tmf/v135/i3/p434
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:421
    Full-text PDF :240
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024