Abstract:
We consider a finite-dimensional Poincaré-invariant dynamical system with an additional SU(2)SU(2) symmetry that can be interpreted as a finite extended object evolving in Minkowski space. We show that for any value of the spin ss, the mass spectrum {M}{M} of the system is determined by roots of the equation Az2−+Bz−+C+Dz+=0Az2−+Bz−+C+Dz+=0 where z±=aM2±b√s(s+1)z±=aM2±b√s(s+1) and the coefficients depend only on the state of “internal” variables. We discuss the possibility of describing certain meson and baryon states in terms of the model constructed.
Citation:
S. V. Talalov, “An Extended Relativistic Particle Model with Arbitrary Spin and Isospin”, TMF, 135:2 (2003), 289–302; Theoret. and Math. Phys., 135:2 (2003), 693–703
\Bibitem{Tal03}
\by S.~V.~Talalov
\paper An Extended Relativistic Particle Model with Arbitrary Spin and Isospin
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 289--302
\mathnet{http://mi.mathnet.ru/tmf190}
\crossref{https://doi.org/10.4213/tmf190}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 693--703
\crossref{https://doi.org/10.1023/A:1023626717129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400009}
Linking options:
https://www.mathnet.ru/eng/tmf190
https://doi.org/10.4213/tmf190
https://www.mathnet.ru/eng/tmf/v135/i2/p289
This publication is cited in the following 3 articles:
A. E. Milovidov, G. S. Sharov, “Closed relativistic strings in geometrically nontrivial spaces”, Theoret. and Math. Phys., 142:1 (2005), 61–70
M. V. Pavlov, “The description of pairs of compatible first-order differential geometric poisson brackets”, Theor Math Phys, 142:2 (2005), 244
M. V. Pavlov, “The description of pairs of compatible first-order differential geometric poisson brackets”, Theoret. and Math. Phys., 142:2 (2005), 244–258