Abstract:
We approximately describe the transition regime between two vortex-type flows in a gas of hard spheres. Such flows rotate as solid bodies about their axes, which in turn move translationally with arbitrary linear velocities. We study the asymptotic behavior of the integral norm of the discrepancy between the two sides of the Boltzmann equation under a special choice of hydrodynamic parameters of the distribution.
Keywords:
hard spheres, Boltzmann equation, vortex-type flows.
\Bibitem{Gor03}
\by V.~D.~Gordevskii
\paper Vortices in a Gas of Hard Spheres
\jour TMF
\yr 2003
\vol 135
\issue 2
\pages 303--314
\mathnet{http://mi.mathnet.ru/tmf181}
\crossref{https://doi.org/10.4213/tmf181}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2008767}
\zmath{https://zbmath.org/?q=an:1178.82064}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 2
\pages 704--713
\crossref{https://doi.org/10.1023/A:1023678701199}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183468400010}
Linking options:
https://www.mathnet.ru/eng/tmf181
https://doi.org/10.4213/tmf181
https://www.mathnet.ru/eng/tmf/v135/i2/p303
This publication is cited in the following 3 articles:
V. D. Gordevskii, E. S. Sazonova, “Continuum analogue of bimodal distributions”, Theoret. and Math. Phys., 171:3 (2012), 839–847
V. D. Gordevskii, “Rotating flows with acceleration and compaction in the model of hard spheres”, Theoret. and Math. Phys., 161:2 (2009), 1558–1566
Chu, ZKH, “Transport of rarefied gases inside a vortex tube induced by a surface wave”, Zeitschrift fur Angewandte Mathematik und Physik, 57:3 (2006), 433