Abstract:
We present a new vorticity-raising transformation for the second integrable complexification of the sine-Gordon equation on the plane. The new transformation is a product of four Schlesinger maps of the Painleve-V equation to itself and allows constructing the n-vortex solution more efficiently than the previously reported transformation comprising a product of 2n maps.
Citation:
N. Olver, I. V. Barashenkov, “Complex Sine-Gordon-2: A New Algorithm for Multivortex Solutions on the Plane”, TMF, 144:2 (2005), 405–409; Theoret. and Math. Phys., 144:2 (2005), 1223–1226
\Bibitem{OlvBar05}
\by N.~Olver, I.~V.~Barashenkov
\paper Complex Sine-Gordon-2: A New Algorithm for Multivortex Solutions on the Plane
\jour TMF
\yr 2005
\vol 144
\issue 2
\pages 405--409
\mathnet{http://mi.mathnet.ru/tmf1865}
\crossref{https://doi.org/10.4213/tmf1865}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195013}
\zmath{https://zbmath.org/?q=an:1178.35335}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1223O}
\elib{https://elibrary.ru/item.asp?id=17703449}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 2
\pages 1223--1226
\crossref{https://doi.org/10.1007/s11232-005-0153-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232092900019}
Linking options:
https://www.mathnet.ru/eng/tmf1865
https://doi.org/10.4213/tmf1865
https://www.mathnet.ru/eng/tmf/v144/i2/p405
This publication is cited in the following 9 articles:
Peter A. Clarkson, Chun-Kong Law, Chia-Hua Lin, “A Constructive Proof for the Umemura Polynomials of the Third Painlevé Equation”, SIGMA, 19 (2023), 080, 20 pp.
Zhou Yu., Manukure S., “Rational and Interactive Solutions to the B-Type Kadomtsev-Petviashvili Equation”, J. Appl. Anal. Comput., 11:5 (2021), 2473–2490
Clarkson P.A. Gomez-Ullate D. Grandati Y. Milson R., “Cyclic Maya Diagrams and Rational Solutions of Higher Order Painleve Systems”, Stud. Appl. Math., 144:3 (2020), 357–385
Peter A Clarkson, Ellen Dowie, “Rational solutions of the Boussinesq equation and applications to rogue waves”, Transactions of Mathematics and Its Applications, 1:1 (2017)
Clarkson, PA, “Vortices and Polynomials”, Studies in Applied Mathematics, 123:1 (2009), 37
Clarkson, PA, “Rational solutions of the classical Boussinesq system”, Nonlinear Analysis-Real World Applications, 10:6 (2009), 3360
Clarkson, PA, “RATIONAL SOLUTIONS OF THE BOUSSINESQ EQUATION”, Analysis and Applications, 6:4 (2008), 349
Sergyeyev A, Demskoi D, “Sasa-Satsuma (complex modified Korteweg-de Vries II) and the complex sine-Gordon II equation revisited: Recursion operators, nonlocal symmetries, and more”, Journal of Mathematical Physics, 48:4 (2007), 042702
Peter A. Clarkson, “Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations”, Comput. Methods Funct. Theory, 6:2 (2006), 329