Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2005, Volume 144, Number 2, Pages 410–422
DOI: https://doi.org/10.4213/tmf1866
(Mi tmf1866)
 

This article is cited in 3 scientific papers (total in 3 papers)

Perturbative Analysis of Wave Interaction in Nonlinear Systems

A. Vekslera, Y. Zarmiab

a Ben-Gurion University of the Negev
b Jacob Blaustein Institute for Desert Research
Full-text PDF (314 kB) Citations (3)
References:
Abstract: We propose a new way to handle obstacles to asymptotic integrability in perturbed nonlinear PDEs in the method of normal forms (NFs) in the case of multiwave solutions. Instead of including the whole obstacle in the NF, we include only its resonant part (if it exists) in the NF and assign the remainder to the homological equation. This leaves the NF integrable, and its solutions retain the character of the solutions of the unperturbed equation. We use the freedom in the expansion to construct canonical obstacles that are confined to the interaction region of the waves. For soliton solutions (e. g., of the KdV equation), the interaction region is a finite domain around the origin; the canonical obstacles then do not generate secular terms in the homological equation. When the interaction region is infinite (or semi-infinite, e.g., in wave-front solutions of the Burgers equation), the obstacles may contain resonant terms. The obstacles generate waves of a new type that cannot be written as functionals of the solutions of the NF. When the obstacle contributes a resonant term to the NF, this leads to a nonstandard update of the wave velocity.
Keywords: nonlinear evolution equations, wave interaction, obstacles to asymptotic integrability, perturbed KdV equation, perturbed Burgers equation.
English version:
Theoretical and Mathematical Physics, 2005, Volume 144, Issue 2, Pages 1227–1237
DOI: https://doi.org/10.1007/s11232-005-0154-2
Bibliographic databases:
Language: Russian
Citation: A. Veksler, Y. Zarmi, “Perturbative Analysis of Wave Interaction in Nonlinear Systems”, TMF, 144:2 (2005), 410–422; Theoret. and Math. Phys., 144:2 (2005), 1227–1237
Citation in format AMSBIB
\Bibitem{VekZar05}
\by A.~Veksler, Y.~Zarmi
\paper Perturbative Analysis of Wave Interaction in Nonlinear Systems
\jour TMF
\yr 2005
\vol 144
\issue 2
\pages 410--422
\mathnet{http://mi.mathnet.ru/tmf1866}
\crossref{https://doi.org/10.4213/tmf1866}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195014}
\zmath{https://zbmath.org/?q=an:1178.35338}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1227V}
\elib{https://elibrary.ru/item.asp?id=17703450}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 2
\pages 1227--1237
\crossref{https://doi.org/10.1007/s11232-005-0154-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232092900020}
\elib{https://elibrary.ru/item.asp?id=13857018}
Linking options:
  • https://www.mathnet.ru/eng/tmf1866
  • https://doi.org/10.4213/tmf1866
  • https://www.mathnet.ru/eng/tmf/v144/i2/p410
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:509
    Full-text PDF :218
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024