Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 135, Number 1, Pages 82–94
DOI: https://doi.org/10.4213/tmf176
(Mi tmf176)
 

This article is cited in 4 scientific papers (total in 4 papers)

Wave Equations in Riemannian Spaces

K. S. Mamaevaa, N. N. Trunovb

a St. Petersburg State University of Economics and Finance
b D. I. Mendeleev Institute for Metrology
Full-text PDF (252 kB) Citations (4)
References:
Abstract: With regard to applications in quantum theory, we consider the classical wave equation involving the scalar curvature with an arbitrary coefficient ξξ. General properties of this equation and its solutions are studied based on modern results in group analysis with the aim to fix a physically justified value of ξξ. These properties depend essentially not only on the values of ξξ and the mass parameter but also on the type and dimension of the space. Form invariance and conformal invariance must be distinguished in general. A class of Lorentz spaces in which the massless equation satisfies the Huygens principle and its Green's function is free of a logarithmic singularity exists only for the conformal value of ξξ. The same value of ξξ follows from other arguments and the relation to the known WKB transformation method that we establish.
Keywords: wave equation, curved space-time, conformal invariance, conformal transformation, Huygens principle.
Received: 31.01.2002
Revised: 13.05.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 135, Issue 1, Pages 520–530
DOI: https://doi.org/10.1023/A:1023235503054
Bibliographic databases:
Language: Russian
Citation: K. S. Mamaeva, N. N. Trunov, “Wave Equations in Riemannian Spaces”, TMF, 135:1 (2003), 82–94; Theoret. and Math. Phys., 135:1 (2003), 520–530
Citation in format AMSBIB
\Bibitem{MamTru03}
\by K.~S.~Mamaeva, N.~N.~Trunov
\paper Wave Equations in Riemannian Spaces
\jour TMF
\yr 2003
\vol 135
\issue 1
\pages 82--94
\mathnet{http://mi.mathnet.ru/tmf176}
\crossref{https://doi.org/10.4213/tmf176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1997652}
\zmath{https://zbmath.org/?q=an:1178.58011}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 1
\pages 520--530
\crossref{https://doi.org/10.1023/A:1023235503054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183054500004}
Linking options:
  • https://www.mathnet.ru/eng/tmf176
  • https://doi.org/10.4213/tmf176
  • https://www.mathnet.ru/eng/tmf/v135/i1/p82
  • This publication is cited in the following 4 articles:
    1. Lobashev, AA, “A universal effective quantum number for centrally symmetric problems”, Journal of Physics A-Mathematical and Theoretical, 42:34 (2009), 345202  crossref  mathscinet  zmath  isi  scopus  scopus
    2. Pavlov, YV, “Space-Time Description of Scalar Particle Creation by a Homogeneous Isotropic Gravitational Field”, Gravitation & Cosmology, 14:4 (2008), 314  crossref  mathscinet  zmath  adsnasa  isi
    3. N. N. Trunov, “A Class of Potentials for Which Exact Semiclassical Quantization Can Be Achieved”, Theoret. and Math. Phys., 138:3 (2004), 407–417  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Yu. V. Pavlov, “Renormalization and Dimensional Regularization for a Scalar Field with Gauss–Bonnet-Type Coupling to Curvature”, Theoret. and Math. Phys., 140:2 (2004), 1095–1108  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:617
    Full-text PDF :237
    References:119
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025