Abstract:
We study the possibility of expressing the invariant QCD coupling function (i.e., the effective coupling constant) in an explicit analytic form in two- and three-loop approximations as well as in the case of the Padé-transformed β-function. Both the timelike and spacelike domains are investigated. Technical aspects of the Shirkov–Solovtsov analytic perturbation theory are considered. Explicit expressions for the two- and three-loop effective coupling functions in the timelike domain are obtained. In the last case, we apply a new method of expanding functions represented in an arbitrary loop order of perturbation theory in powers of the two-loop function. The comparison with numerical data in the infrared region shows that the obtained explicit expressions for the three-loop functions agree fully with the exact numerical results.
Citation:
D. S. Kurashev, B. A. Magradze, “Explicit Expressions for Timelike and Spacelike Observables of Quantum Chromodynamics in Analytic Perturbation Theory”, TMF, 135:1 (2003), 95–106; Theoret. and Math. Phys., 135:1 (2003), 531–540
\Bibitem{KurMag03}
\by D.~S.~Kurashev, B.~A.~Magradze
\paper Explicit Expressions for Timelike and Spacelike Observables of Quantum Chromodynamics in Analytic Perturbation Theory
\jour TMF
\yr 2003
\vol 135
\issue 1
\pages 95--106
\mathnet{http://mi.mathnet.ru/tmf175}
\crossref{https://doi.org/10.4213/tmf175}
\zmath{https://zbmath.org/?q=an:1178.78013}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 1
\pages 531--540
\crossref{https://doi.org/10.1023/A:1023287519892}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183054500005}
Linking options:
https://www.mathnet.ru/eng/tmf175
https://doi.org/10.4213/tmf175
https://www.mathnet.ru/eng/tmf/v135/i1/p95
This publication is cited in the following 43 articles:
Ayala C., Cvetic G., Kotikov A.V., Shaikhatdenov B.G., “Bjorken Sum Rule in QCD Frameworks With Analytic (Holomorphic) Coupling”, Int. J. Mod. Phys. A, 33:18-19 (2018), 1850112
Nesterenko A., “Strong Interactions in Spacelike and Timelike Domains: Dispersive Approach”, Strong Interactions in Spacelike and Timelike Domains: Dispersive Approach, Elsevier Science BV, 2017, 1–204
Strong Interactions in Spacelike and Timelike Domains, 2017, 169
Strong Interactions in Spacelike and Timelike Domains, 2017, 183
Deur A. Brodsky S.J. de Teramond G.F., “The QCD running coupling”, Prog. Part. Nucl. Phys., 90 (2016), 1–74
Ayala C., Cvetic G., “anQCD: A Mathematica package for calculations in general analytic QCD models”, Comput. Phys. Commun., 190 (2015), 182–199
Cvetic G., “Evaluations of Low-Energy Physical Quantities in QCD With Ir Freezing of the Coupling”, Few-Body Syst., 55:5-7 (2014), 567–577
Cvetic G., “Techniques of Evaluation of QCD Low-Energy Physical Quantities With Running Coupling With Infrared Fixed Point”, Phys. Rev. D, 89:3 (2014), 036003
Khandramai V., “On Applications of Mathematica Package “Fapt” in QCD”, 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Journal of Physics Conference Series, 523, IOP Publishing Ltd, 2014, 012062
Bakulev A.P., Khandramai V.L., “Fapt: a Mathematica Package for Calculations in QCD Fractional Analytic Perturbation Theory”, Comput. Phys. Commun., 184:1 (2013), 183–193
Ayala C., Cvetic G., “Calculation of Binding Energies and Masses of Quarkonia in Analytic QCD Models”, Phys. Rev. D, 87:5 (2013), 054008
Cvetic G., Villavicencio C., “Operator Product Expansion with Analytic QCD in Tau Decay Physics”, Phys. Rev. D, 86:11 (2012), 116001
Ayala C., Contreras C., Cvetic G., “Extended Analytic QCD Model with Perturbative QCD Behavior at High Momenta”, Phys. Rev. D, 85:11 (2012), 114043
Cvetic G. Kotikov A.V., “Analogs of Noninteger Powers in General Analytic QCD”, J. Phys. G-Nucl. Part. Phys., 39:6 (2012), 065005
Pasechnik, RS, “Nucleon spin structure and perturbative QCD frontier on the move”, Physical Review D, 81:1 (2010), 016010
Cvetic G., Koegerler R., Valenzuela C., “Reconciling the analytic QCD with the ITEP operator product expansion philosophy”, Phys Rev D, 82:11 (2010), 114004
Bakulev A.P., Mikhailov S.V., Stefanis N.G., “Higher-order QCD perturbation theory in different schemes: from FOPT to CIPT to FAPT”, Journal of High Energy Physics, 2010, no. 6, 085
Magradze B.A., “Testing the Concept of Quark-Hadron Duality with the ALEPH tau Decay Data”, Few Body Systems, 48:2–4 (2010), 143–169
Contreras C., Cvetic G., Espinosa O., Martinez H.E., “Simple analytic QCD model with perturbative QCD behavior at high momenta”, Phys Rev D, 82:7 (2010), 074005