Abstract:
We obtain a general solution of the equations determining the Killing–Yano tensor of rank pp on an nn-dimensional (1⩽p⩽n−1) pseudo-Riemannian manifold of constant curvature and discuss possible applications of the obtained result.
This publication is cited in the following 23 articles:
Somberg P., Zima P., “Killing Spinor-Valued Forms and Their Integrability Conditions”, Ann. Glob. Anal. Geom., 58:4 (2020), 351–384
Josef Mikeš et al., Differential Geometry of Special Mappings, 2019
Josef Mikeš et al., Differential Geometry of Special Mappings, 2019
Khavkine I., “The Calabi complex and Killing sheaf cohomology”, J. Geom. Phys., 113 (2017), 131–169
Khavkine I., “Cohomology with Causally Restricted Supports”, Ann. Henri Poincare, 17:12 (2016), 3577–3603
Mikes J. Stepanova E. Vanzurova A., “Differential Geometry of Special Mappings”, Differential Geometry of Special Mappings, Palacky Univ, 2015, 1–566
S. E. Stepanov, I. A. Alexandrova, I. I. Tsyganok, J. Mikeš, “Conformal Killing forms on totally umbilical submanifolds”, Journal of Mathematical Sciences, 217:5 (2016), 525–539
S. E. Stepanov, I. I. Tsyganok, “Comparative Analysis of Spectral Properties of the Hodge–De Rham and Tachibana Operators”, J Math Sci, 207:4 (2015), 614
Stepanov S.E., Jukl M., Mikes J., “On Dimensions of Vector Spaces of Conformal Killing Forms”, Algebra, Geometry and Mathematical Physics (Agmp), Springer Proceedings in Mathematics & Statistics, 85, eds. Makhlouf A., Paal E., Silvestrov S., Stolin A., Springer, 2014, 495–507
Stepanov S.E., Jukl M., Mikes J., “Vanishing Theorems of Conformal Killing Forms and Their Applications To Electrodynamics in the General Relativity Theory”, Int. J. Geom. Methods Mod. Phys., 11:9 (2014), 1450039
Stepanov S.E., Mikes J., “Betti and Tachibana Numbers of Compact Riemannian Manifolds”, Differ. Geom. Appl., 31:4 (2013), 486–495
S. E. Stepanov, I. Mikesh, I. I. Tsyganok, “Operator Tachibany”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2013, no. 4, 82–92
Josef Mikeš, Sergey Stepanov, Marek Jukl, Geometric Methods in Physics, 2013, 377
Santillan O.P., “Hidden Symmetries and Supergravity Solutions”, J. Math. Phys., 53:4 (2012), 043509
Mikes J., Stepanov S., Hinterleitner I., “Projective Mappings and Dimensions of Vector Spaces of Three Types of Killing-Yano Tensors on Pseudo Riemannian Manifolds of Constant Curvature”, XX International Fall Workshop on Geometry and Physics, AIP Conference Proceedings, 1460, eds. Linan M., Barbero F., DeDiego D., Amer Inst Physics, 2012, 202–205
S. E. Stepanov, “Curvature and Tachibana numbers”, Sb. Math., 202:7 (2011), 1059–1069
Acik O., Ertem U., Onder M., Vercin A., “Killing-Yano forms of a class of spherically symmetric space-times: A unified generation of higher forms”, Journal of Mathematical Physics, 51:2 (2010), 022502
S. E. Stepanov, “Curvature and Tachibana numbers”, J. Math. Sci., 172:6 (2011), 901–908
S. E. Stepanov, “Some conformal and projective scalar invariants of Riemannian manifolds”, Math. Notes, 80:6 (2006), 848–852