Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 134, Number 3, Pages 382–387
DOI: https://doi.org/10.4213/tmf170
(Mi tmf170)
 

This article is cited in 23 scientific papers (total in 23 papers)

The Killing–Yano Tensor

S. E. Stepanov

Vladimir State Pedagogical University
References:
Abstract: We obtain a general solution of the equations determining the Killing–Yano tensor of rank pp on an nn-dimensional (1pn1) pseudo-Riemannian manifold of constant curvature and discuss possible applications of the obtained result.
Keywords: constant curvature manifold, Killing–Yano tensor, Maxwell equations, Dirac equations.
Received: 27.02.2002
Revised: 03.04.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 134, Issue 3, Pages 333–338
DOI: https://doi.org/10.1023/A:1022645304580
Bibliographic databases:
Language: Russian
Citation: S. E. Stepanov, “The Killing–Yano Tensor”, TMF, 134:3 (2003), 382–387; Theoret. and Math. Phys., 134:3 (2003), 333–338
Citation in format AMSBIB
\Bibitem{Ste03}
\by S.~E.~Stepanov
\paper The Killing--Yano Tensor
\jour TMF
\yr 2003
\vol 134
\issue 3
\pages 382--387
\mathnet{http://mi.mathnet.ru/tmf170}
\crossref{https://doi.org/10.4213/tmf170}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001815}
\zmath{https://zbmath.org/?q=an:1178.53074}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 3
\pages 333--338
\crossref{https://doi.org/10.1023/A:1022645304580}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182047100004}
Linking options:
  • https://www.mathnet.ru/eng/tmf170
  • https://doi.org/10.4213/tmf170
  • https://www.mathnet.ru/eng/tmf/v134/i3/p382
  • This publication is cited in the following 23 articles:
    1. Somberg P., Zima P., “Killing Spinor-Valued Forms and Their Integrability Conditions”, Ann. Glob. Anal. Geom., 58:4 (2020), 351–384  crossref  mathscinet  isi  scopus
    2. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    3. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    4. Khavkine I., “The Calabi complex and Killing sheaf cohomology”, J. Geom. Phys., 113 (2017), 131–169  crossref  mathscinet  zmath  isi  scopus
    5. Khavkine I., “Cohomology with Causally Restricted Supports”, Ann. Henri Poincare, 17:12 (2016), 3577–3603  crossref  mathscinet  zmath  isi  scopus
    6. Mikes J. Stepanova E. Vanzurova A., “Differential Geometry of Special Mappings”, Differential Geometry of Special Mappings, Palacky Univ, 2015, 1–566  mathscinet  isi
    7. S. E. Stepanov, I. A. Alexandrova, I. I. Tsyganok, J. Mikeš, “Conformal Killing forms on totally umbilical submanifolds”, Journal of Mathematical Sciences, 217:5 (2016), 525–539  mathnet  mathnet  crossref
    8. S. E. Stepanov, I. I. Tsyganok, “Comparative Analysis of Spectral Properties of the Hodge–De Rham and Tachibana Operators”, J Math Sci, 207:4 (2015), 614  crossref
    9. Stepanov S.E., Jukl M., Mikes J., “On Dimensions of Vector Spaces of Conformal Killing Forms”, Algebra, Geometry and Mathematical Physics (Agmp), Springer Proceedings in Mathematics & Statistics, 85, eds. Makhlouf A., Paal E., Silvestrov S., Stolin A., Springer, 2014, 495–507  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Stepanov S.E., Jukl M., Mikes J., “Vanishing Theorems of Conformal Killing Forms and Their Applications To Electrodynamics in the General Relativity Theory”, Int. J. Geom. Methods Mod. Phys., 11:9 (2014), 1450039  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Stepanov S.E., Mikes J., “Betti and Tachibana Numbers of Compact Riemannian Manifolds”, Differ. Geom. Appl., 31:4 (2013), 486–495  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    12. Stepanov S.E., Mikes J., “Betti and Tachibana Numbers”, Miskolc Math. Notes, 14:2 (2013), 475–486  crossref  mathscinet  zmath  isi
    13. S. E. Stepanov, I. Mikesh, I. I. Tsyganok, “Operator Tachibany”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2013, no. 4, 82–92  mathnet
    14. Josef Mikeš, Sergey Stepanov, Marek Jukl, Geometric Methods in Physics, 2013, 377  crossref
    15. Santillan O.P., “Hidden Symmetries and Supergravity Solutions”, J. Math. Phys., 53:4 (2012), 043509  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    16. Mikes J., Stepanov S., Hinterleitner I., “Projective Mappings and Dimensions of Vector Spaces of Three Types of Killing-Yano Tensors on Pseudo Riemannian Manifolds of Constant Curvature”, XX International Fall Workshop on Geometry and Physics, AIP Conference Proceedings, 1460, eds. Linan M., Barbero F., DeDiego D., Amer Inst Physics, 2012, 202–205  crossref  adsnasa  isi
    17. S. E. Stepanov, “Curvature and Tachibana numbers”, Sb. Math., 202:7 (2011), 1059–1069  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Acik O., Ertem U., Onder M., Vercin A., “Killing-Yano forms of a class of spherically symmetric space-times: A unified generation of higher forms”, Journal of Mathematical Physics, 51:2 (2010), 022502  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    19. S. E. Stepanov, “Curvature and Tachibana numbers”, J. Math. Sci., 172:6 (2011), 901–908  mathnet  crossref  mathscinet
    20. S. E. Stepanov, “Some conformal and projective scalar invariants of Riemannian manifolds”, Math. Notes, 80:6 (2006), 848–852  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:695
    Full-text PDF :289
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025