Abstract:
We suggest sufficient conditions for the existence of weak limits of solutions of the Liouville equation as time increases indefinitely. The presence of the weak limit of the probability distribution density leads to a new interpretation of the second law of thermodynamics for entropy increase.
Citation:
V. V. Kozlov, D. V. Treschev, “Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems”, TMF, 134:3 (2003), 388–400; Theoret. and Math. Phys., 134:3 (2003), 339–350
\Bibitem{KozTre03}
\by V.~V.~Kozlov, D.~V.~Treschev
\paper Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems
\jour TMF
\yr 2003
\vol 134
\issue 3
\pages 388--400
\mathnet{http://mi.mathnet.ru/tmf164}
\crossref{https://doi.org/10.4213/tmf164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001816}
\zmath{https://zbmath.org/?q=an:1178.37050}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 3
\pages 339--350
\crossref{https://doi.org/10.1023/A:1022697321418}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182047100005}
Linking options:
https://www.mathnet.ru/eng/tmf164
https://doi.org/10.4213/tmf164
https://www.mathnet.ru/eng/tmf/v134/i3/p388
This publication is cited in the following 34 articles:
Casey O Barkan, “On the convergence of phase space distributions to microcanonical equilibrium: dynamical isometry and generalized coarse-graining”, J. Phys. A: Math. Theor., 57:47 (2024), 475001
V. V. Vedenyapin, S. Z. Adzhiev, V. V. Kazantseva, “Boltzmann and Poincaré Entropy, Boltzmann Extremals, and Hamilton–Jacobi Method for Non-Hamiltonian Situation”, J Math Sci, 260:4 (2022), 434
A. S. Trushechkin, M. Merkli, J. D. Cresser, J. Anders, “Open quantum system dynamics and the mean force Gibbs state”, AVS Quantum Sci., 4 (2022), 12301–23
Zhou J., Sun D., Hwang I., Sun D., “Control Protocol Design and Analysis For Unmanned Aircraft System Traffic Management”, IEEE Trans. Intell. Transp. Syst., 22:9 (2021), 5914–5925
A. I. Komech, E. A. Kopylova, “Attractors of nonlinear Hamiltonian partial differential equations”, Russian Math. Surveys, 75:1 (2020), 1–87
Valery V. Kozlov, “Nonequilibrium Statistical Mechanics of Weakly Ergodic Systems”, Regul. Chaotic Dyn., 25:6 (2020), 674–688
Qian H., Wang Sh., Yi Y., “Entropy Productions in Dissipative Systems”, Proc. Amer. Math. Soc., 147:12 (2019), 5209–5225
Carati A., Galgani L., Gangemi F., Gangemi R., “Relaxation Times and Ergodic Properties in a Realistic Ionic-Crystal Model, and the Modern Form of the Fpu Problem”, Physica A, 532 (2019), UNSP 121911
V. V. Vedenyapin, S. Z. Adzhiev, V. V. Kazantseva, “Entropiya po Boltsmanu i Puankare, ekstremali Boltsmana i metod Gamiltona–Yakobi v negamiltonovoi situatsii”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 64, no. 1, Rossiiskii universitet druzhby narodov, M., 2018, 37–59
Andrea Carati, Luigi Galgani, Alberto Maiocchi, Fabrizio Gangemi, Roberto Gangemi, “The FPU Problem as a Statistical-mechanical Counterpart of the KAM Problem, and Its Relevance for the Foundations of Physics”, Regul. Chaotic Dyn., 23:6 (2018), 704–719
Tatiana Salnikova, Vsevolod Salnikov, 2018 14th International Conference “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (STAB), 2018, 1
V. V. Vedenyapin, M. A. Negmatov, N. N. Fimin, “Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences”, Izv. Math., 81:3 (2017), 505–541
Adzhiev S.Z., Melikhov I.V., Vedenyapin V.V., “The H-Theorem For the Physico-Chemical Kinetic Equations With Explicit Time Discretization”, Physica A, 481 (2017), 60–69
Adzhiev S.Z., Melikhov I.V., Vedenyapin V.V., “The H-Theorem For the Physico-Chemical Kinetic Equations With Discrete Time and For Their Generalizations”, Physica A, 480 (2017), 39–50
Adzhiev S., Melikhov I., Vedenyapin V., “The H-Theorem For the Chemical Kinetic Equations With Discrete Time and For Their Generalizations”, V International Conference on Problems of Mathematical and Theoretical Physics and Mathematical Modelling, Journal of Physics Conference Series, 788, IOP Publishing Ltd, 2017, UNSP 012001
V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290
Lykov A.A., Malyshev V.A., “a New Approach To Boltzmann'S Ergodic Hypothesis”, Dokl. Math., 92:2 (2015), 624–626
V. V. Vedenyapin, S. Z. Adzhiev, “Entropy in the sense of Boltzmann and Poincaré”, Russian Math. Surveys, 69:6 (2014), 995–1029
Trushechkin A., “Microscopic and Soliton-Like Solutions of the Boltzmann Enskog and Generalized Enskog Equations For Elastic and Inelastic Hard Spheres”, Kinet. Relat. Mod., 7:4 (2014), 755–778
I. V. Volovich, A. S. Trushechkin, “Asymptotic properties of quantum dynamics in bounded domains at various time scales”, Izv. Math., 76:1 (2012), 39–78