Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 134, Number 3, Pages 388–400
DOI: https://doi.org/10.4213/tmf164
(Mi tmf164)
 

This article is cited in 34 scientific papers (total in 34 papers)

Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems

V. V. Kozlov, D. V. Treschev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We suggest sufficient conditions for the existence of weak limits of solutions of the Liouville equation as time increases indefinitely. The presence of the weak limit of the probability distribution density leads to a new interpretation of the second law of thermodynamics for entropy increase.
Keywords: Hamiltonian system, Liouville equation, weak convergence, entropy.
Received: 05.07.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 134, Issue 3, Pages 339–350
DOI: https://doi.org/10.1023/A:1022697321418
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Kozlov, D. V. Treschev, “Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems”, TMF, 134:3 (2003), 388–400; Theoret. and Math. Phys., 134:3 (2003), 339–350
Citation in format AMSBIB
\Bibitem{KozTre03}
\by V.~V.~Kozlov, D.~V.~Treschev
\paper Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems
\jour TMF
\yr 2003
\vol 134
\issue 3
\pages 388--400
\mathnet{http://mi.mathnet.ru/tmf164}
\crossref{https://doi.org/10.4213/tmf164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001816}
\zmath{https://zbmath.org/?q=an:1178.37050}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 3
\pages 339--350
\crossref{https://doi.org/10.1023/A:1022697321418}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182047100005}
Linking options:
  • https://www.mathnet.ru/eng/tmf164
  • https://doi.org/10.4213/tmf164
  • https://www.mathnet.ru/eng/tmf/v134/i3/p388
  • This publication is cited in the following 34 articles:
    1. Casey O Barkan, “On the convergence of phase space distributions to microcanonical equilibrium: dynamical isometry and generalized coarse-graining”, J. Phys. A: Math. Theor., 57:47 (2024), 475001  crossref
    2. V. V. Vedenyapin, S. Z. Adzhiev, V. V. Kazantseva, “Boltzmann and Poincaré Entropy, Boltzmann Extremals, and Hamilton–Jacobi Method for Non-Hamiltonian Situation”, J Math Sci, 260:4 (2022), 434  crossref
    3. A. S. Trushechkin, M. Merkli, J. D. Cresser, J. Anders, “Open quantum system dynamics and the mean force Gibbs state”, AVS Quantum Sci., 4 (2022), 12301–23  mathnet  crossref  isi  scopus
    4. Zhou J., Sun D., Hwang I., Sun D., “Control Protocol Design and Analysis For Unmanned Aircraft System Traffic Management”, IEEE Trans. Intell. Transp. Syst., 22:9 (2021), 5914–5925  crossref  isi
    5. A. I. Komech, E. A. Kopylova, “Attractors of nonlinear Hamiltonian partial differential equations”, Russian Math. Surveys, 75:1 (2020), 1–87  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Valery V. Kozlov, “Nonequilibrium Statistical Mechanics of Weakly Ergodic Systems”, Regul. Chaotic Dyn., 25:6 (2020), 674–688  mathnet  crossref  mathscinet
    7. Qian H., Wang Sh., Yi Y., “Entropy Productions in Dissipative Systems”, Proc. Amer. Math. Soc., 147:12 (2019), 5209–5225  crossref  mathscinet  isi
    8. Carati A., Galgani L., Gangemi F., Gangemi R., “Relaxation Times and Ergodic Properties in a Realistic Ionic-Crystal Model, and the Modern Form of the Fpu Problem”, Physica A, 532 (2019), UNSP 121911  crossref  isi  scopus
    9. V. V. Vedenyapin, S. Z. Adzhiev, V. V. Kazantseva, “Entropiya po Boltsmanu i Puankare, ekstremali Boltsmana i metod Gamiltona–Yakobi v negamiltonovoi situatsii”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 64, no. 1, Rossiiskii universitet druzhby narodov, M., 2018, 37–59  mathnet  crossref
    10. Andrea Carati, Luigi Galgani, Alberto Maiocchi, Fabrizio Gangemi, Roberto Gangemi, “The FPU Problem as a Statistical-mechanical Counterpart of the KAM Problem, and Its Relevance for the Foundations of Physics”, Regul. Chaotic Dyn., 23:6 (2018), 704–719  mathnet  crossref
    11. Tatiana Salnikova, Vsevolod Salnikov, 2018 14th International Conference “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (STAB), 2018, 1  crossref
    12. V. V. Vedenyapin, M. A. Negmatov, N. N. Fimin, “Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences”, Izv. Math., 81:3 (2017), 505–541  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Adzhiev S.Z., Melikhov I.V., Vedenyapin V.V., “The H-Theorem For the Physico-Chemical Kinetic Equations With Explicit Time Discretization”, Physica A, 481 (2017), 60–69  crossref  mathscinet  isi  scopus  scopus
    14. Adzhiev S.Z., Melikhov I.V., Vedenyapin V.V., “The H-Theorem For the Physico-Chemical Kinetic Equations With Discrete Time and For Their Generalizations”, Physica A, 480 (2017), 39–50  crossref  mathscinet  isi  scopus  scopus
    15. Adzhiev S., Melikhov I., Vedenyapin V., “The H-Theorem For the Chemical Kinetic Equations With Discrete Time and For Their Generalizations”, V International Conference on Problems of Mathematical and Theoretical Physics and Mathematical Modelling, Journal of Physics Conference Series, 788, IOP Publishing Ltd, 2017, UNSP 012001  crossref  mathscinet  isi  scopus  scopus
    16. V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    17. Lykov A.A., Malyshev V.A., “a New Approach To Boltzmann'S Ergodic Hypothesis”, Dokl. Math., 92:2 (2015), 624–626  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    18. V. V. Vedenyapin, S. Z. Adzhiev, “Entropy in the sense of Boltzmann and Poincaré”, Russian Math. Surveys, 69:6 (2014), 995–1029  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. Trushechkin A., “Microscopic and Soliton-Like Solutions of the Boltzmann Enskog and Generalized Enskog Equations For Elastic and Inelastic Hard Spheres”, Kinet. Relat. Mod., 7:4 (2014), 755–778  crossref  mathscinet  zmath  isi  scopus  scopus
    20. I. V. Volovich, A. S. Trushechkin, “Asymptotic properties of quantum dynamics in bounded domains at various time scales”, Izv. Math., 76:1 (2012), 39–78  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1029
    Full-text PDF :407
    References:128
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025