Abstract:
Schouten's identity is used to obtain a new identity in Minkowski space. Some applications of the new identity in high-energy physics are considered, including the possibility of significant shortening of the expressions for the traces of products of 10 and more Dirac γ matrices.
Citation:
A. V. Bondarev, “A new identity in Minkowski space and some its applications”, TMF, 101:2 (1994), 315–319; Theoret. and Math. Phys., 101:2 (1994), 1376–1379
\Bibitem{Bon94}
\by A.~V.~Bondarev
\paper A~new identity in Minkowski space and some its applications
\jour TMF
\yr 1994
\vol 101
\issue 2
\pages 315--319
\mathnet{http://mi.mathnet.ru/tmf1688}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348391}
\zmath{https://zbmath.org/?q=an:0852.53016}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 101
\issue 2
\pages 1376--1379
\crossref{https://doi.org/10.1007/BF01018286}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QY17400013}
Linking options:
https://www.mathnet.ru/eng/tmf1688
https://www.mathnet.ru/eng/tmf/v101/i2/p315
This publication is cited in the following 5 articles:
M. F. M. Lutz, I. Vidaña, “On kinematical constraints in boson-boson systems”, Eur. Phys. J. A, 48:9 (2012)
P. A. Vshivtseva, V. I. Denisov, I. P. Denisova, “An integral relation for tensor polynomials”, Theoret. and Math. Phys., 166:2 (2011), 186–193
Shu-Yu Ho, Jusak Tandean, “Kaon decay into three photons revisited”, Phys. Rev. D, 82:11 (2010)
J. L. Friar, U. van Kolck, M. C. M. Rentmeester, R. G. E. Timmermans, “Nucleon-mass difference in chiral perturbation theory and nuclear forces”, Phys. Rev. C, 70:4 (2004)
I. P. Denisova, “A theorem on general relations for a tensor of the second rank in a four-dimensional Riemannian space”, Russian Math. (Iz. VUZ), 45:3 (2001), 71–72