Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 134, Number 2, Pages 273–288
DOI: https://doi.org/10.4213/tmf157
(Mi tmf157)
 

This article is cited in 1 scientific paper (total in 1 paper)

Spectral Properties of Hamiltonians of Charged Systems in a Homogeneous Magnetic Field: II. The Structure of the Pure Point Spectrum

G. M. Zhislin

Scientific Research Institute of Radio Physics
Full-text PDF (269 kB) Citations (1)
References:
Abstract: We study the pure point spectrum of the energy operator H(PΣ) of a many-particle charged quantum system in a homogeneous magnetic field based on the results in our previous work under fixation of the sum PΣ of the pseudomomentum components of the system. We prove that the discrete spectrum H(PΣ) of a short-range system is infinite under some conditions (which, for example, hold for a system of two oppositely charged particles) even in the case of a finitely supported potential. For a long-range system of the type of a (+)-ion of an atom (including the ion), the discrete spectrum is infinite.
Keywords: Hamiltonian, homogeneous magnetic field, spectral properties, relative motion, pseudomomentum.
Received: 18.01.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 134, Issue 2, Pages 240–253
DOI: https://doi.org/10.1023/A:1022232221784
Bibliographic databases:
Language: Russian
Citation: G. M. Zhislin, “Spectral Properties of Hamiltonians of Charged Systems in a Homogeneous Magnetic Field: II. The Structure of the Pure Point Spectrum”, TMF, 134:2 (2003), 273–288; Theoret. and Math. Phys., 134:2 (2003), 240–253
Citation in format AMSBIB
\Bibitem{Zhi03}
\by G.~M.~Zhislin
\paper Spectral Properties of Hamiltonians of Charged Systems in a Homogeneous Magnetic Field: II.~The Structure of the Pure Point Spectrum
\jour TMF
\yr 2003
\vol 134
\issue 2
\pages 273--288
\mathnet{http://mi.mathnet.ru/tmf157}
\crossref{https://doi.org/10.4213/tmf157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025798}
\zmath{https://zbmath.org/?q=an:1178.81075}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 2
\pages 240--253
\crossref{https://doi.org/10.1023/A:1022232221784}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000181522200008}
Linking options:
  • https://www.mathnet.ru/eng/tmf157
  • https://doi.org/10.4213/tmf157
  • https://www.mathnet.ru/eng/tmf/v134/i2/p273
  • This publication is cited in the following 1 articles:
    1. J. I. Abdullaev, B. U. Mamirov, “Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator”, Theoret. and Math. Phys., 176:3 (2013), 1184–1193  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :209
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025