Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 93, Number 2, Pages 302–329 (Mi tmf1530)  

This article is cited in 56 scientific papers (total in 56 papers)

Poisson–Lie groups. The quantum duality principle and the twisted quantum double

M. A. Semenov-Tian-Shansky

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: The quantum duality principle relates the quantum groups that arise on the quantization of Poisson–Lie dual groups and generalizes Fourier duality. Also considered are the theory of the Heisenberg double, which replaces the cotangent bundle for quantum groups, and its deformations (the twisted double).
Received: 18.06.1992
English version:
Theoretical and Mathematical Physics, 1992, Volume 93, Issue 2, Pages 1292–1307
DOI: https://doi.org/10.1007/BF01083527
Bibliographic databases:
Language: Russian
Citation: M. A. Semenov-Tian-Shansky, “Poisson–Lie groups. The quantum duality principle and the twisted quantum double”, TMF, 93:2 (1992), 302–329; Theoret. and Math. Phys., 93:2 (1992), 1292–1307
Citation in format AMSBIB
\Bibitem{Sem92}
\by M.~A.~Semenov-Tian-Shansky
\paper Poisson--Lie groups. The quantum duality principle and the twisted quantum double
\jour TMF
\yr 1992
\vol 93
\issue 2
\pages 302--329
\mathnet{http://mi.mathnet.ru/tmf1530}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1233548}
\zmath{https://zbmath.org/?q=an:0834.22019}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 93
\issue 2
\pages 1292--1307
\crossref{https://doi.org/10.1007/BF01083527}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LJ23200009}
Linking options:
  • https://www.mathnet.ru/eng/tmf1530
  • https://www.mathnet.ru/eng/tmf/v93/i2/p302
  • This publication is cited in the following 56 articles:
    1. Valentin Bonzom, Maïté Dupuis, Florian Girelli, Qiaoyin Pan, “Local observables in SUq(2) lattice gauge theory”, Phys. Rev. D, 107:2 (2023)  crossref
    2. Hank Chen, Florian Girelli, “Categorified Drinfel'd double and BF theory: 2-groups in 4D”, Phys. Rev. D, 106:10 (2022)  crossref
    3. Florian Girelli, Panagiotis Tsimiklis, “Discretization of 4D Poincaré BF theory: From groups to 2-groups”, Phys. Rev. D, 106:4 (2022)  crossref
    4. Angel Ballesteros, Ivan Gutierrez-Sagredo, Flavio Mercati, “Coisotropic Lie bialgebras and complementary dual Poisson homogeneous spaces”, J. Phys. A: Math. Theor., 54:31 (2021), 315203  crossref
    5. Alexander Spies, “Poisson-geometric Analogues of Kitaev Models”, Commun. Math. Phys., 383:1 (2021), 345  crossref
    6. Catherine Meusburger, “Poisson–Lie Groups and Gauge Theory”, Symmetry, 13:8 (2021), 1324  crossref
    7. Doliwa A. Kashaev R.M., “Non-Commutative Birational Maps Satisfying Zamolodchikov Equation, and Desargues Lattices”, J. Math. Phys., 61:9 (2020), 092704  crossref  isi
    8. Francesco Bascone, Franco Pezzella, Patrizia Vitale, “Poisson-Lie T-duality of WZW model via current algebra deformation”, J. High Energ. Phys., 2020:9 (2020)  crossref
    9. Vincenzo E. Marotta, Franco Pezzella, Patrizia Vitale, “T-dualities and Doubled Geometry of the Principal Chiral Model”, J. High Energ. Phys., 2019:11 (2019)  crossref
    10. Gleb Arutyunov, Rob Klabbers, Enrico Olivucci, “Quantum trace formulae for the integrals of the hyperbolic Ruijsenaars-Schneider model”, J. High Energ. Phys., 2019:5 (2019)  crossref
    11. Mercati F., Sergola M., “Physical Constraints on Quantum Deformations of Spacetime Symmetries”, Nucl. Phys. B, 933 (2018), 320–339  crossref  mathscinet  zmath  isi  scopus
    12. Ángel Ballesteros, Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J Herranz, Javier de Lucas, “Poisson–Hopf algebra deformations of Lie–Hamilton systems”, J. Phys. A: Math. Theor., 51:6 (2018), 065202  crossref
    13. A. Ballesteros, G. Gubitosi, I. Gutierrez-Sagredo, F. J. Herranz, “Curved momentum spaces from quantum (anti–)de Sitter groups in ( 3+1 ) dimensions”, Phys. Rev. D, 97:10 (2018)  crossref
    14. Vincenzo E. Marotta, Franco Pezzella, Patrizia Vitale, “Doubling, T-Duality and Generalized Geometry: a simple model”, J. High Energ. Phys., 2018:8 (2018)  crossref
    15. Giacomo Rosati, “κ –de Sitter and κ -Poincaré symmetries emerging from Chern-Simons (2+1)D gravity with a cosmological constant”, Phys. Rev. D, 96:6 (2017)  crossref
    16. Gus Schrader, Alexander Shapiro, “Quantum groups, quantum tori, and the Grothendieck–Springer resolution”, Advances in Mathematics, 321 (2017), 431  crossref
    17. Gus Schrader, Alexander Shapiro, “Dual pairs of quantum moment maps and doubles of Hopf algebras”, Journal of Algebra, 492 (2017), 74  crossref
    18. Á. Ballesteros, G. Gubitosi, I. Gutiérrez-Sagredo, F.J. Herranz, “Curved momentum spaces from quantum groups with cosmological constant”, Physics Letters B, 773 (2017), 47  crossref
    19. Ángel Ballesteros, Francisco J. Herranz, Fabio Musso, Pedro Naranjo, “The κ-(A)dS quantum algebra in (3 + 1) dimensions”, Physics Letters B, 766 (2017), 205  crossref
    20. Pavel Pyatov, “On the construction of unitary quantum group differential calculus”, J. Phys. A: Math. Theor., 49:41 (2016), 415202  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:840
    Full-text PDF :372
    References:61
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025