Abstract:
Potentials of the Schrödinger equation, slowly decreasing at infinity, generate an infinite discrete spectrum converging to zero. The inverse scattering problem in the class of such potentials is solved in a constructive way similarly to the classical soliton theory. An infinite-dimensional system arising from Backlund transformations over soliton solutions plays the role of a determinant representation of the potential. The asymptotics at infinity is derived by use of the Poisson summation formula. An application to the long-time asymptotics of the solution of the Korteweg-de Vries equation is considered.
Citation:
V. Yu. Novokshenov, “Reflectionless potentials and soliton series of the KDV equation”, TMF, 93:2 (1992), 286–301; Theoret. and Math. Phys., 93:2 (1992), 1279–1291
\Bibitem{Nov92}
\by V.~Yu.~Novokshenov
\paper Reflectionless potentials and soliton series of the KDV equation
\jour TMF
\yr 1992
\vol 93
\issue 2
\pages 286--301
\mathnet{http://mi.mathnet.ru/tmf1529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1233547}
\zmath{https://zbmath.org/?q=an:0826.35111}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 93
\issue 2
\pages 1279--1291
\crossref{https://doi.org/10.1007/BF01083526}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LJ23200008}
Linking options:
https://www.mathnet.ru/eng/tmf1529
https://www.mathnet.ru/eng/tmf/v93/i2/p286
This publication is cited in the following 2 articles:
W. Renger, “Toda Soliton Limits on General Backgrounds”, Journal of Differential Equations, 151:1 (1999), 191
V.Yu. Novokshenov, “Reflectionless potentials and soliton series of the nonlinear Schrödinger equation”, Physica D: Nonlinear Phenomena, 87:1-4 (1995), 109