Abstract:
The double scaling limit of a new class of the multi-matrix models proposed in [1], which possess the W-symmetry at the discrete level, is investigated in details. These models are demonstrated to fall into the same universality class as the standard multi-matrix models. In particular, the transformation of the W-algebra at the discrete level into the continuum one of the paper [2] is proposed, the corresponding partition functions being compared. All calculations are demonstrated in full in the first non-trivial case of W(3)-constraints.
Citation:
A. D. Mironov, S. Z. Pakulyak, “On the continuum limit of the conformal matrix models”, TMF, 95:2 (1993), 317–340; Theoret. and Math. Phys., 95:2 (1993), 604–625
\Bibitem{MirPak93}
\by A.~D.~Mironov, S.~Z.~Pakulyak
\paper On the continuum limit of the conformal matrix models
\jour TMF
\yr 1993
\vol 95
\issue 2
\pages 317--340
\mathnet{http://mi.mathnet.ru/tmf1470}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243258}
\zmath{https://zbmath.org/?q=an:0852.35135}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 95
\issue 2
\pages 604--625
\crossref{https://doi.org/10.1007/BF01017146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993ML10100015}
Linking options:
https://www.mathnet.ru/eng/tmf1470
https://www.mathnet.ru/eng/tmf/v95/i2/p317
This publication is cited in the following 20 articles:
A. Mironov, A. Morozov, “Superintegrability as the hidden origin of the Nekrasov calculus”, Phys. Rev. D, 106:12 (2022)
Mironov A. Mishnyakov V. Morozov A., “Non-Abelian W-Representation For Gkm”, Phys. Lett. B, 823 (2021), 136721
Itoyama H., Mironov A., Morozov A., “Complete Solution to Gaussian Tensor Model and Its Integrable Properties”, Phys. Lett. B, 802 (2020), 135237
Morozov A., “Cauchy Formula and the Character Ring”, Eur. Phys. J. C, 79:1 (2019), 76
Morozov A., “On W-Representations of Beta- and Q, T-Deformed Matrix Models”, Phys. Lett. B, 792 (2019), 205–213
Mironov A. Morozov A. Zakirova Z., “Discrete Painleve Equation, Miwa Variables and String Equation in 5D Matrix Models”, J. High Energy Phys., 2019, no. 10, 227
Mironov A., Morozov A., “Q-Painleve Equation From Virasoro Constraints”, Phys. Lett. B, 785 (2018), 207–210
Hidetoshi Awata, Hiroaki Kanno, Andrei Mironov, Alexei Morozov, Kazuma Suetake, Yegor Zenkevich, “(q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces”, J. High Energ. Phys., 2018:3 (2018)
Andrei Mironov, Alexei Morozov, “Check-Operators and Quantum Spectral Curves”, SIGMA, 13 (2017), 047, 17 pp.
Mironov A. Morozov A., “On Determinant Representation and Integrability of Nekrasov Functions”, Phys. Lett. B, 773 (2017), 34–46
Aminov G. Mironov A. Morozov A., “Modular Properties of 6D (Dell) Systems”, J. High Energy Phys., 2017, no. 11, 023
Alexander Alexandrov, “Open intersection numbers and free fields”, Nuclear Physics B, 922 (2017), 247
Awata H., Kanno H., Matsumoto T., Mironov A., Morozov A., Morozov A., Ohkubo Yu., Zenkevich Y., “Explicit examples of DIM constraints for network matrix models”, J. High Energy Phys., 2016, no. 7, 103
Alexandrov A. Mironov A. Morozov A. Natanzon S., “On KP-Integrable Hurwitz Functions”, J. High Energy Phys., 2014, no. 11, 080
Alexandrov, A, “BGWM as second constituent of complex matrix model”, Journal of High Energy Physics, 2009, no. 12, 053
Alexandrov, A, “PARTITION FUNCTIONS OF MATRIX MODELS AS THE FIRST SPECIAL FUNCTIONS OF STRING THEORY II. KONTSEVICH MODEL”, International Journal of Modern Physics A, 24:27 (2009), 4939
Mironov A., Morozov A., “Virasoro constraints for Kontsevich-Hurwitz partition function”, Journal of High Energy Physics, 2009, no. 2, 024
Morozov A., “Challenges of matrix models”, String Theory: From Gauge Interactions to Cosmology, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 208, 2006, 129–162
A. S. Alexandrov, A. D. Mironov, A. Yu. Morozov, “Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model”, Theoret. and Math. Phys., 142:3 (2005), 349–411
Alexandrov A, Morozov A, Mironov A, “Partition functions of matrix models: First special functions of string theory”, International Journal of Modern Physics A, 19:24 (2004), 4127–4163