Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1993, Volume 95, Number 2, Pages 307–316 (Mi tmf1469)  

This article is cited in 29 scientific papers (total in 29 papers)

{Descendants constructed from matter field in Landau–Ginzburg theories coupled to topological gravity}

A. S. Losev
References:
Abstract: It is argued that gravitational descendants in the theory of topological gravity coupled to topological Landau–Ginzburg theory(not necessarily conformal) can be constructed from matter fields alone (without metric fields and \hbox {ghosts}). In this sense topological gravity is “induced”. We discuss the mechanism of this effect (that turns out to be connected with K. Saito's higher residue pairing: Ki(σi(Φ1),Φ2)=K0(Φ1,Φ2)),and demonstrate how it works in a simplest nontrivial example: correlator on a sphere with four marked points. We also discuss some results on k-point correlators on a sphere. From the idea of “induced” topological gravity it follows that the theory of “pure” topological gravity (without topological matter) is equivalent to the “trivial” Landau–Ginzburg theory (with quadratic superpotential).
English version:
Theoretical and Mathematical Physics, 1993, Volume 95, Issue 2, Pages 595–603
DOI: https://doi.org/10.1007/BF01017145
Bibliographic databases:
Language: Russian
Citation: A. S. Losev, “{Descendants constructed from matter field in Landau–Ginzburg theories coupled to topological gravity}”, TMF, 95:2 (1993), 307–316; Theoret. and Math. Phys., 95:2 (1993), 595–603
Citation in format AMSBIB
\Bibitem{Los93}
\by A.~S.~Losev
\paper {Descendants constructed from matter field in Landau--Ginzburg theories coupled to
topological gravity}
\jour TMF
\yr 1993
\vol 95
\issue 2
\pages 307--316
\mathnet{http://mi.mathnet.ru/tmf1469}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243257}
\zmath{https://zbmath.org/?q=an:0847.53057}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 95
\issue 2
\pages 595--603
\crossref{https://doi.org/10.1007/BF01017145}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993ML10100014}
Linking options:
  • https://www.mathnet.ru/eng/tmf1469
  • https://www.mathnet.ru/eng/tmf/v95/i2/p307
  • This publication is cited in the following 29 articles:
    1. Mizera S. Pokraka A., “From Infinity to Four Dimensions: Higher Residue Pairings and Feynman Integrals”, J. High Energy Phys., 2020, no. 2, 159  crossref  isi
    2. Si Li, Dan Xie, Shing-Tung Yau, “Seiberg–Witten Differential via Primitive Forms”, Commun. Math. Phys., 367:1 (2019), 193  crossref
    3. Marshakov, A, “From Geometry of Jets to Quasiclassical Hierarchies”, Acta Applicandae Mathematicae, 109:1 (2010), 223  crossref  mathscinet  zmath  isi
    4. A. V. Marshakov, “Non-Abelian gauge theories, prepotentials, and Abelian differentials”, Theoret. and Math. Phys., 159:2 (2009), 598–617  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Marshakov A., “On Nonabelian Theories and Abelian Differentials”, Differential Equations: Geometry, Symmetries and Integrability - the Abel Symposium 2008, Abel Symposia, 5, 2009, 257–274  isi
    6. Marshakov A., “Seiberg-Witten theory and extended Toda hierarchy”, Journal of High Energy Physics, 2008, no. 3, 055  crossref  mathscinet  isi
    7. Davide Gaiotto, Leonardo Rastelli, Tadashi Takayanagi, “Minimal superstrings and loop gas models”, J. High Energy Phys., 2005:05 (2005), 029  crossref
    8. Tadashi Takayanagi, “c< 1 string from two dimensional black holes”, J. High Energy Phys., 2005:07 (2005), 050  crossref
    9. Shin Nakamura, Vasilis Niarchos, “Notes on the S-matrix of bosonic and topological non-critical strings”, J. High Energy Phys., 2005:10 (2005), 025  crossref
    10. JETP Letters, 77:2 (2003), 53–57  mathnet  crossref
    11. Tohru Eguchi, Yuji Sugawara, “Branches of Script N = 1 vacua and Argyres-Douglas points”, J. High Energy Phys., 2003:05 (2003), 063  crossref
    12. A. Losev, I. Polyubin, “On Compatibility of Tensor Products on Solutions to Commutativity and WDVV Equations”, JETP Letters, 73:2 (2001), 53–58  mathnet  mathnet  crossref  scopus
    13. A. MARSHAKOV, A. MIRONOV, A. MOROZOV, “MORE EVIDENCE FOR THE WDVV EQUATIONS IN ${\mathcal N} = 2$ SUSY YANG–MILLS THEORIES”, Int. J. Mod. Phys. A, 15:08 (2000), 1157  crossref
    14. A. Losev, N. Nekrassov, S. Shatashvili, Strings, Branes and Dualities, 1999, 359  crossref
    15. A. Losev, Topological Field Theory, Primitive Forms and Related Topics, 1998, 305  crossref
    16. A. Losev, N. Nekrasov, S. Shatashvili, “Issues in topological gauge theory”, Nuclear Physics B, 534:3 (1998), 549  crossref
    17. Atsushi Matsuo, Topological Field Theory, Primitive Forms and Related Topics, 1998, 337  crossref
    18. A. V. Marshakov, “On integrable systems and supersymmetric gauge theories”, Theoret. and Math. Phys., 112:1 (1997), 791–826  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    19. A. Losev, “On “Hodge” topological strings at genus zero”, Jetp Lett., 65:5 (1997), 386  crossref
    20. Tohru Eguchi, NATO ASI Series, 361, Low-Dimensional Applications of Quantum Field Theory, 1997, 121  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:407
    Full-text PDF :162
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025