Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 102, Number 3, Pages 384–419 (Mi tmf1276)  

This article is cited in 22 scientific papers (total in 22 papers)

Self-dual Yang–Mills fields in $d=4$ and integrable systems in $1\leq d\leq 3$

T. A. Ivanova, A. D. Popov

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
References:
Abstract: The Ward correspondence between self-dual Yang–Mills fields and holomorphic vector bundles is used to develop a method for reducing the Lax pair for the self-duality equations of the Yang–Mills model in $d=4$ with respect to the action of continuous symmetry groups. It is well known that reductions of the self-duality equations lead to systems of nonlinear differential equations in dimension $1\leq d\leq 3$. For the integration of the reduced equations, it is necessary to find a Lax pair whose compatibility conditions is these equations. The method makes it possible to obtain systematically a Lax representation for the reduced self-duality equations. This is illustrated by a large number of examples.
Received: 26.06.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 102, Issue 3, Pages 280–304
DOI: https://doi.org/10.1007/BF01017880
Bibliographic databases:
Language: Russian
Citation: T. A. Ivanova, A. D. Popov, “Self-dual Yang–Mills fields in $d=4$ and integrable systems in $1\leq d\leq 3$”, TMF, 102:3 (1995), 384–419; Theoret. and Math. Phys., 102:3 (1995), 280–304
Citation in format AMSBIB
\Bibitem{IvaPop95}
\by T.~A.~Ivanova, A.~D.~Popov
\paper Self-dual Yang--Mills fields in $d=4$ and integrable systems in~$1\leq d\leq 3$
\jour TMF
\yr 1995
\vol 102
\issue 3
\pages 384--419
\mathnet{http://mi.mathnet.ru/tmf1276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348851}
\zmath{https://zbmath.org/?q=an:0854.58046}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 102
\issue 3
\pages 280--304
\crossref{https://doi.org/10.1007/BF01017880}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ02000008}
Linking options:
  • https://www.mathnet.ru/eng/tmf1276
  • https://www.mathnet.ru/eng/tmf/v102/i3/p384
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024