Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1995, Volume 102, Number 3, Pages 378–383 (Mi tmf1275)  

Pseudoclassical Foldy–Wotehoissen transformation and canonical quantization of $D=2n$-dimensional relativistic spin particle in external electromagnetic field

G. V. Grigoryan, R. P. Grigoryan

Yerevan Physics Institute
References:
Abstract: The canonical quantization of the $D=2n$-dimensional Dirac spin particle in an arbitrary electromagnetic field is performed in a gauge, that allows one to describe particles and antiparticles (both massive and massless) simultaneously just on the classical level. To find the canonical (Newton–Wigner) coordinates the pseudoclassical Foldy–Wotehoissen transformation is used. The connection of this quantization scheme with Blount's approach to Dirac particle in the external electromagnetic field is discussed.
Received: 09.04.1994
English version:
Theoretical and Mathematical Physics, 1995, Volume 102, Issue 3, Pages 275–279
DOI: https://doi.org/10.1007/BF01017879
Bibliographic databases:
Language: Russian
Citation: G. V. Grigoryan, R. P. Grigoryan, “Pseudoclassical Foldy–Wotehoissen transformation and canonical quantization of $D=2n$-dimensional relativistic spin particle in external electromagnetic field”, TMF, 102:3 (1995), 378–383; Theoret. and Math. Phys., 102:3 (1995), 275–279
Citation in format AMSBIB
\Bibitem{GriGri95}
\by G.~V.~Grigoryan, R.~P.~Grigoryan
\paper Pseudoclassical Foldy--Wotehoissen transformation and canonical quantization of $D=2n$-dimensional relativistic spin particle in external electromagnetic field
\jour TMF
\yr 1995
\vol 102
\issue 3
\pages 378--383
\mathnet{http://mi.mathnet.ru/tmf1275}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348850}
\zmath{https://zbmath.org/?q=an:0852.53055}
\transl
\jour Theoret. and Math. Phys.
\yr 1995
\vol 102
\issue 3
\pages 275--279
\crossref{https://doi.org/10.1007/BF01017879}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ02000007}
Linking options:
  • https://www.mathnet.ru/eng/tmf1275
  • https://www.mathnet.ru/eng/tmf/v102/i3/p378
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024