Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1996, Volume 109, Number 2, Pages 187–201
DOI: https://doi.org/10.4213/tmf1221
(Mi tmf1221)
 

This article is cited in 12 scientific papers (total in 12 papers)

Classification of motions of a relativistic string with massive ends with linearizable boundary conditions

V. P. Petrov, G. S. Sharov

Tver State University
References:
Abstract: We classified all motions (world surfaces) of a relativistic string with massive ends, for which equations of motion and boundary conditions can be linearized through a natural parametrization of the end's trajectories. These motions can be represented as Fourier series with eigenfunctions of some generalization of the Sturm–Liouville problem. Completeness of a set of these eigenfunctions in class C is proved. It is shown that in 2+1 and 3+1-dimensional Minkowski spaces all these motions reduce to an uniform rotation of a straight string or some such spatially coincident strings (world surface is helicoid). In spaces with higher dimensionality other non-trivial motions of the investigated type are possible.
Received: 29.11.1995
Revised: 13.05.1996
English version:
Theoretical and Mathematical Physics, 1996, Volume 109, Issue 2, Pages 1388–1399
DOI: https://doi.org/10.1007/BF02072005
Bibliographic databases:
Language: Russian
Citation: V. P. Petrov, G. S. Sharov, “Classification of motions of a relativistic string with massive ends with linearizable boundary conditions”, TMF, 109:2 (1996), 187–201; Theoret. and Math. Phys., 109:2 (1996), 1388–1399
Citation in format AMSBIB
\Bibitem{PetSha96}
\by V.~P.~Petrov, G.~S.~Sharov
\paper Classification of motions of a~relativistic string with massive ends with linearizable boundary conditions
\jour TMF
\yr 1996
\vol 109
\issue 2
\pages 187--201
\mathnet{http://mi.mathnet.ru/tmf1221}
\crossref{https://doi.org/10.4213/tmf1221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472468}
\zmath{https://zbmath.org/?q=an:0962.81527}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 109
\issue 2
\pages 1388--1399
\crossref{https://doi.org/10.1007/BF02072005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996XM63500003}
Linking options:
  • https://www.mathnet.ru/eng/tmf1221
  • https://doi.org/10.4213/tmf1221
  • https://www.mathnet.ru/eng/tmf/v109/i2/p187
  • This publication is cited in the following 12 articles:
    1. A. E. Milovidov, G. S. Sharov, “Closed relativistic strings in geometrically nontrivial spaces”, Theoret. and Math. Phys., 142:1 (2005), 61–70  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. M. V. Pavlov, “The description of pairs of compatible first-order differential geometric poisson brackets”, Theor Math Phys, 142:2 (2005), 244  crossref
    3. M. V. Pavlov, “The description of pairs of compatible first-order differential geometric poisson brackets”, Theoret. and Math. Phys., 142:2 (2005), 244–258  mathnet  mathnet  crossref  crossref  isi
    4. G. S. Sharov, “Perturbed States of a Rotating Relativistic String”, Theoret. and Math. Phys., 140:2 (2004), 1109–1120  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Sharov G.S., “String models and hadron excited states on the Regge trajectories”, I. Ya Pomeranchuk and Physics at the Turn of the Century, 2003, 324–330  crossref  adsnasa  isi
    6. Sharov G.S., “Instability of the Y string baryon model within classical dynamics”, Physics of Atomic Nuclei, 65:5 (2002), 906–916  crossref  adsnasa  isi  scopus  scopus  scopus
    7. Inopin A., Sharov G.S., “Hadronic Regge trajectories: Problems and approaches”, Phys. Rev. D, 63:5 (2001), 054023, 10 pp.  crossref  adsnasa  isi
    8. Sharov G.S., “Quasirotational motions and stability problem in the dynamics of string hadron models”, Phys. Rev. D, 62:9 (2000), 094015, 13 pp.  crossref  adsnasa  isi  scopus  scopus  scopus
    9. Sharov G.S., “String models of the baryons and Regge trajectories”, Physics of Atomic Nuclei, 62:10 (1999), 1705–1716  adsnasa  isi
    10. G. S. Sharov, “Classification of rotational motions for the baryon model “triangle””, Theoret. and Math. Phys., 114:2 (1998), 220–234  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Sharov G.S., “String baryonic model "triangle": Hypocycloidal solutions and the Regge trajectories”, Phys. Rev. D, 58:11 (1998), 114009, 11 pp.  crossref  zmath  adsnasa  isi  scopus  scopus  scopus
    12. G. S. Sharov, “String barionic model “triangle””, Theoret. and Math. Phys., 113:1 (1997), 1263–1276  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:481
    Full-text PDF :219
    References:90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025