Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1996, Volume 109, Number 2, Pages 175–186
DOI: https://doi.org/10.4213/tmf1220
(Mi tmf1220)
 

This article is cited in 4 scientific papers (total in 4 papers)

On quantization of systems with actions unbounded from below

O. I. Zavialova, M. Kanenagab, A. I. Kirillova, V. Yu. Mamakina, M. Namikib, I. Ohbab, E. V. Polyachenkoa

a Independent University of Moscow
b Waseda University
Full-text PDF (389 kB) Citations (4)
References:
Abstract: We consider two possible approaches to the problem of quantization of systems with actions unbounded from below. The first uses the Borel summation method applied to the perturbation expansion in coupling constant. The second is based on the kerneled Langevin equation of stochastic quantization. We show that in a simple model the first method gives some Schwinger functions even in the case where the standard path integrals diverge. The solutions of the kerneled Langevin equation for the model are studied in detail both analytically and numerically. The fictitious time averages are shown to have the limits which can be considered as the Schwinger functions. An evidence is presented that both methods may give the same results.
Received: 13.06.1996
English version:
Theoretical and Mathematical Physics, 1996, Volume 109, Issue 2, Pages 1379–1387
DOI: https://doi.org/10.1007/BF02072004
Bibliographic databases:
Language: Russian
Citation: O. I. Zavialov, M. Kanenaga, A. I. Kirillov, V. Yu. Mamakin, M. Namiki, I. Ohba, E. V. Polyachenko, “On quantization of systems with actions unbounded from below”, TMF, 109:2 (1996), 175–186; Theoret. and Math. Phys., 109:2 (1996), 1379–1387
Citation in format AMSBIB
\Bibitem{ZavKanKir96}
\by O.~I.~Zavialov, M.~Kanenaga, A.~I.~Kirillov, V.~Yu.~Mamakin, M.~Namiki, I.~Ohba, E.~V.~Polyachenko
\paper On quantization of systems with actions unbounded from below
\jour TMF
\yr 1996
\vol 109
\issue 2
\pages 175--186
\mathnet{http://mi.mathnet.ru/tmf1220}
\crossref{https://doi.org/10.4213/tmf1220}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472467}
\zmath{https://zbmath.org/?q=an:0962.81522}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 109
\issue 2
\pages 1379--1387
\crossref{https://doi.org/10.1007/BF02072004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996XM63500002}
Linking options:
  • https://www.mathnet.ru/eng/tmf1220
  • https://doi.org/10.4213/tmf1220
  • https://www.mathnet.ru/eng/tmf/v109/i2/p175
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:500
    Full-text PDF :209
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024