Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1996, Volume 109, Number 1, Pages 60–69
DOI: https://doi.org/10.4213/tmf1211
(Mi tmf1211)
 

This article is cited in 14 scientific papers (total in 15 papers)

Method of approximate calculating path integrals by using perturbation theory with convergent series. II. Euclidean quantum field theory

V. V. Belokurova, Yu. P. Solov'eva, E. T. Shavgulidzeb

a M. V. Lomonosov Moscow State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We establish a method of approximate calculating path integrals, proposed in our previous paper, for the case where the Gaussian measure is given by an operator of trace class.
Received: 11.09.1995
English version:
Theoretical and Mathematical Physics, 1996, Volume 109, Issue 1, Pages 1294–1301
DOI: https://doi.org/10.1007/BF02069888
Bibliographic databases:
Language: Russian
Citation: V. V. Belokurov, Yu. P. Solov'ev, E. T. Shavgulidze, “Method of approximate calculating path integrals by using perturbation theory with convergent series. II. Euclidean quantum field theory”, TMF, 109:1 (1996), 60–69; Theoret. and Math. Phys., 109:1 (1996), 1294–1301
Citation in format AMSBIB
\Bibitem{BelSolSha96}
\by V.~V.~Belokurov, Yu.~P.~Solov'ev, E.~T.~Shavgulidze
\paper Method of approximate calculating path integrals by using perturbation theory with convergent series.~II. Euclidean quantum field theory
\jour TMF
\yr 1996
\vol 109
\issue 1
\pages 60--69
\mathnet{http://mi.mathnet.ru/tmf1211}
\crossref{https://doi.org/10.4213/tmf1211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1605489}
\zmath{https://zbmath.org/?q=an:0938.81016}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 109
\issue 1
\pages 1294--1301
\crossref{https://doi.org/10.1007/BF02069888}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996XH02300006}
Linking options:
  • https://www.mathnet.ru/eng/tmf1211
  • https://doi.org/10.4213/tmf1211
  • https://www.mathnet.ru/eng/tmf/v109/i1/p60
    Cycle of papers
    This publication is cited in the following 15 articles:
    1. Nikita A. Ignatyuk, Stanislav L. Ogarkov, Daniel V. Skliannyi, “Nonlocal Fractional Quantum Field Theory and Converging Perturbation Series”, Symmetry, 15:10 (2023), 1823  crossref
    2. Guskov V.A. Ivanov M.G. Ogarkov S.L., “A Note on Efimov Nonlocal and Nonpolynomial Quantum Scalar Field Theory”, Phys. Part. Nuclei, 52:3 (2021), 420–437  crossref  isi
    3. Sazonov V., “Convergent Series For Polynomial Lattice Models With Complex Actions”, Mod. Phys. Lett. A, 34:30 (2019), 1950243  crossref  isi
    4. Matthew Bernard, Vladislav A. Guskov, Mikhail G. Ivanov, Alexey E. Kalugin, Stanislav L. Ogarkov, “Nonlocal Scalar Quantum Field Theory—Functional Integration, Basis Functions Representation and Strong Coupling Expansion”, Particles, 2:3 (2019), 385  crossref
    5. Ivan Chebotarev, Vladislav Guskov, Stanislav Ogarkov, Matthew Bernard, “S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation”, Particles, 2:1 (2019), 103  crossref
    6. Ivanov A.S., Sazonov V.K., “Convergent series for lattice models with polynomial interactions”, Nucl. Phys. B, 914 (2017), 43–61  crossref  mathscinet  zmath  isi  elib  scopus
    7. Sazonov V.K., “Convergent perturbation theory for lattice models with fermions”, Int. J. Mod. Phys. A, 31:13 (2016), 1650072  crossref  zmath  isi  elib  scopus
    8. V. V. Belokurov, E. T. Shavgulidze, “Nonlinear nonlocal substitutions in functional integrals”, J. Math. Sci., 248:5 (2020), 544–552  mathnet  crossref
    9. “Introduction”, Mathematical Theory of Feynman Path Integrals: An Introduction, 523 (2008), 1  crossref  mathscinet  isi
    10. Albeverio, S, “Generalized Fresnel integrals”, Bulletin Des Sciences Mathematiques, 129:1 (2005), 1  crossref  mathscinet  zmath  isi  scopus
    11. V. V. Belokurov, A. A. Egorov, A. S. Mishchenko, F. Yu. Popelenskii, V. A. Sadovnichii, E. V. Troitskii, A. T. Fomenko, E. T. Shavgulidze, “Yurii Petrovich Solov'ev (obituary)”, Russian Math. Surveys, 59:5 (2004), 941–947  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. Belokurov, VV, “New perturbation theory for quantum field theory: Convergent series instead of asymptotic expansions”, Acta Applicandae Mathematicae, 68:1–3 (2001), 71  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    13. Grosche, C, “Handbook of Feynman path integrals - Introduction”, Handbook of Feynman Path Integrals, 145 (1998), 1  crossref  mathscinet  zmath  isi
    14. V. V. Belokurov, Yu. P. Solov'ev, E. T. Shavgulidze, “Perturbation theory with convergent series for functional integrals with respect to the Feynman measure”, Russian Math. Surveys, 52:2 (1997), 392–393  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. Belokurov, VV, “Perturbation theory with convergent series for arbitrary values of coupling constant”, Modern Physics Letters A, 12:10 (1997), 661  crossref  adsnasa  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:511
    Full-text PDF :231
    References:87
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025