Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1996, Volume 107, Number 3, Pages 450–477
DOI: https://doi.org/10.4213/tmf1169
(Mi tmf1169)
 

This article is cited in 5 scientific papers (total in 5 papers)

Representations for three-body T-matrix on unphysical sheets. I

A. K. Motovilov

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
Full-text PDF (453 kB) Citations (5)
References:
Abstract: Explicit representations are formulated for the Faddeev components of three-body T-matrix continued analytically on unphysical sheets of the energy Riemann surface. According to the representations, the T-matrix is obviously expressed in terms of its components taken on the physical sheet only. The representations for T-matrix are used to construct similar representations for analytical continuation of three-body scattering matrices and resolvent. Domains on unphysical sheets are described where the representations obtained can be applied.
Received: 19.06.1995
English version:
Theoretical and Mathematical Physics, 1996, Volume 107, Issue 3, Pages 784–806
DOI: https://doi.org/10.1007/BF02070386
Bibliographic databases:
Language: Russian
Citation: A. K. Motovilov, “Representations for three-body T-matrix on unphysical sheets. I”, TMF, 107:3 (1996), 450–477; Theoret. and Math. Phys., 107:3 (1996), 784–806
Citation in format AMSBIB
\Bibitem{Mot96}
\by A.~K.~Motovilov
\paper Representations for three-body $T$-matrix on unphysical sheets.~I
\jour TMF
\yr 1996
\vol 107
\issue 3
\pages 450--477
\mathnet{http://mi.mathnet.ru/tmf1169}
\crossref{https://doi.org/10.4213/tmf1169}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1407473}
\zmath{https://zbmath.org/?q=an:0928.47051}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 107
\issue 3
\pages 784--806
\crossref{https://doi.org/10.1007/BF02070386}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WY91300009}
Linking options:
  • https://www.mathnet.ru/eng/tmf1169
  • https://doi.org/10.4213/tmf1169
  • https://www.mathnet.ru/eng/tmf/v107/i3/p450
    Cycle of papers
    This publication is cited in the following 5 articles:
    1. A. A. Arsen'ev, “Mathematical Model of Resonances and Tunneling in a System with a Bound State”, Theoret. and Math. Phys., 136:3 (2003), 1336–1345  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Motovilov, AK, “The structure of the T and S matrix on the unphysical energy sheets for the problem of three quantum particles”, Physics of Particles and Nuclei, 32 (2001), S76  isi
    3. Kolganova, EA, “Mechanism of the emergence of Efimov states in the He-4 trimer”, Physics of Atomic Nuclei, 62:7 (1999), 1179  adsnasa  isi
    4. V. B. Belyaev, A. K. Motovilov, “Perturbation of embedded eigenvalue by a nearly resonance”, Theoret. and Math. Phys., 111:1 (1997), 454–466  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. A. K. Motovilov, “Representations for three-body T-matrix on unphysical sheets. II”, Theoret. and Math. Phys., 107:3 (1996), 807–824  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:494
    Full-text PDF :221
    References:81
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025