Abstract:
Collinear problem of three-particle rearrangement reaction in the framework of the quasi classical method of Fock–Leontovich parabolic equation is reduced to the quantum problem of the one-dimensional harmonic oscillator with variable frequency in an external force field. This allows one to express the S-matrix elements responsible for the rearrangement channel via analytical solution of the oscillator model by using the parameters of the linear configuration
of the three particles.
Citation:
A. V. Bogdanov, A. S. Gevorkyan, A. I. Denisenko, “Quasi classical analytical approximation to the S-matrix of collinear rearrangement reaction”, TMF, 107:2 (1996), 238–250; Theoret. and Math. Phys., 107:2 (1996), 609–619
\Bibitem{BogGevDen96}
\by A.~V.~Bogdanov, A.~S.~Gevorkyan, A.~I.~Denisenko
\paper Quasi classical analytical approximation to the $S$-matrix of collinear rearrangement reaction
\jour TMF
\yr 1996
\vol 107
\issue 2
\pages 238--250
\mathnet{http://mi.mathnet.ru/tmf1152}
\crossref{https://doi.org/10.4213/tmf1152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1406554}
\zmath{https://zbmath.org/?q=an:0979.81087}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 107
\issue 2
\pages 609--619
\crossref{https://doi.org/10.1007/BF02071374}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WG90100006}
Linking options:
https://www.mathnet.ru/eng/tmf1152
https://doi.org/10.4213/tmf1152
https://www.mathnet.ru/eng/tmf/v107/i2/p238
This publication is cited in the following 2 articles:
Bogdanov, AV, “Use of the internet for distributed computing of quantum evolution”, High Performance Computing and Networking, Proceedings, 1823 (2000), 592
Bogdanov, AV, “Internal time peculiarities as a cause of bifurcations arising in classical trajectory problem and quantum chaos creation in three-body system”, International Journal of Bifurcation and Chaos, 9:11 (1999), 2173