Abstract:
A Lagrangian quantization scheme for general gauge theories is proposed on a basis of the BRST–antiBRST symmetry principle in superspace $D=d+2$ ($d$ is a space-time dimension). The BRST–antiBRST transformations are realized in terms of superfields in the form of translations with respect to auxiliary (Grassmann) coordinates of the superspace.
Citation:
P. M. Lavrov, “Superfield form of $Sp(2)$-covariant quantization method for gauge theories”, TMF, 107:2 (1996), 229–237; Theoret. and Math. Phys., 107:2 (1996), 602–608
This publication is cited in the following 8 articles:
Gitman D.M., Moshin P.Yu., Tomazelli J.L., “On superfield covariant quantization in general coordinates”, Eur. Phys. J. C Part. Fields, 44:4 (2005), 591–598
Geyer B., Gitman D.M., Lavrov P.M., Moshin P.Yu., “Superfield extended BRST quantization in general coordinates”, Internat. J. Modern Phys. A, 19:5 (2004), 737–749
Gitman D.M., Moshin P.Yu., “Modifications of Sp(2) covariant superfield quantization”, Phys. Lett. B, 576:1-2 (2003), 227–236
P. M. Lavrov, P. Yu. Moshin, “Superfield Quantization in the $Sp(2)$-Covariant Formalism”, Theoret. and Math. Phys., 129:3 (2001), 1645–1654
Geyer B., Lavrov P., Nersessian A, “Poisson structures in BRST-antiBRST invariant Lagrangian formalism”, Phys. Lett. B, 512:1-2 (2001), 211–216
Lavrov P.M., Moshin P.Y., “Superfield Lagrangian quantization with extended BRST symmetry”, Phys. Lett. B, 508:1-2 (2001), 127–136
B. Geyer, D. M. Gitman, P. M. Lavrov, “Triplectic quantization of gauge theories”, Theoret. and Math. Phys., 123:3 (2000), 813–820
P. M. Lavrov, P. Yu. Moshin, “Unitarity conditions for physical $S$-matrix within the BLT quantization scheme”, Theoret. and Math. Phys., 111:1 (1997), 428–441