Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 217, Number 2, Pages 329–347
DOI: https://doi.org/10.4213/tmf10479
(Mi tmf10479)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discretization of the modified Korteweg–de Vries–sine Gordon equation

Aye Aye Choa, Jing Wanga, Da-jun Zhangba

a Department of Mathematics, Shanghai University, Shanghai, China
b Newtouch Center for Mathematics of Shanghai University, Shanghai, China
References:
Abstract: We provide an integrable discretization of the modified Korteweg–de Vries–sine Gordon equation. The discrete form is a coupled system and is derived via the Cauchy matrix approach by introducing suitable discrete plane wave factors. Solutions and a Lax pair are constructed in this approach. The dynamics of some solutions are illustrated. The modified Korteweg–de Vries–sine Gordon equation is recovered in the continuum limit.
Keywords: modified Korteweg–de Vries–sine Gordon equation, Cauchy matrix approach, solution, Lax pair, continuum limit.
Funding agency Grant number
National Natural Science Foundation of China 12271334
12126352
12126343
11875040
This research was supported by the National Science Foundation of China (grant Nos. 12271334, 12126352, 12126343, and 11875040).
Received: 11.02.2023
Revised: 25.05.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 217, Issue 2, Pages 1700–1716
DOI: https://doi.org/10.1134/S0040577923110065
Bibliographic databases:
Document Type: Article
PACS: 02.30.Ik, 05.45.Yv
MSC: 35Q51, 35Q55, 37K60
Language: Russian
Citation: Aye Aye Cho, Jing Wang, Da-jun Zhang, “Discretization of the modified Korteweg–de Vries–sine Gordon equation”, TMF, 217:2 (2023), 329–347; Theoret. and Math. Phys., 217:2 (2023), 1700–1716
Citation in format AMSBIB
\Bibitem{ChoWanZha23}
\by Aye~Aye~Cho, Jing~Wang, Da-jun~Zhang
\paper Discretization of the~modified Korteweg--de Vries--sine Gordon equation
\jour TMF
\yr 2023
\vol 217
\issue 2
\pages 329--347
\mathnet{http://mi.mathnet.ru/tmf10479}
\crossref{https://doi.org/10.4213/tmf10479}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4670393}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...217.1700C}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 217
\issue 2
\pages 1700--1716
\crossref{https://doi.org/10.1134/S0040577923110065}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85168807917}
Linking options:
  • https://www.mathnet.ru/eng/tmf10479
  • https://doi.org/10.4213/tmf10479
  • https://www.mathnet.ru/eng/tmf/v217/i2/p329
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:141
    Russian version HTML:8
    References:32
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024