Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 217, Number 2, Pages 317–328
DOI: https://doi.org/10.4213/tmf10580
(Mi tmf10580)
 

This article is cited in 2 scientific papers (total in 2 papers)

Integration of negative-order modified Korteweg–de Vries equation in a class of periodic functions

G. U. Urazboevab, A. B. Yakhshimuratovc, M. M. Khasanova

a Urgench State University, Urgench, Uzbekistan
b Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Khorezm Branch, Urgench, Uzbekistan
c The Urgench Branch, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Urgench, Uzbekistan
References:
Abstract: We study the negative-order modified Korteweg–de Vries equation and show that it can be integrated by the inverse spectral transform method. We determine the evolution of the spectral data for the Dirac operator with periodic potential associated with a solution of the negative-order modified Korteweg–de Vries equation. The obtained results allow applying the inverse spectral transform method for solving the negative-order modified Korteweg–de Vries equation in the class of periodic functions. Important corollaries are obtained concerning the analyticity and the period of a solution in spatial variable. We show that a function constructed using the Dubrovin–Trubowitz system and the first trace formula satisfies the negative-order modified Korteweg–de Vries equation. We prove the solvability of the Cauchy problem for the infinite Dubrovin–Trubowitz system of differential equations in the class of three-times continuously differentiable periodic functions.
Keywords: negative-order modified Korteweg–de Vries equation, Dirac operator, inverse spectral problem, Dubrovin–Trubowitz system of equations, trace formula.
Received: 03.07.2023
Revised: 03.08.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 217, Issue 2, Pages 1689–1699
DOI: https://doi.org/10.1134/S0040577923110053
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. U. Urazboev, A. B. Yakhshimuratov, M. M. Khasanov, “Integration of negative-order modified Korteweg–de Vries equation in a class of periodic functions”, TMF, 217:2 (2023), 317–328; Theoret. and Math. Phys., 217:2 (2023), 1689–1699
Citation in format AMSBIB
\Bibitem{UraYakKha23}
\by G.~U.~Urazboev, A.~B.~Yakhshimuratov, M.~M.~Khasanov
\paper Integration of negative-order modified Korteweg--de~Vries equation in a~class of periodic functions
\jour TMF
\yr 2023
\vol 217
\issue 2
\pages 317--328
\mathnet{http://mi.mathnet.ru/tmf10580}
\crossref{https://doi.org/10.4213/tmf10580}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4670392}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...217.1689U}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 217
\issue 2
\pages 1689--1699
\crossref{https://doi.org/10.1134/S0040577923110053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85177665799}
Linking options:
  • https://www.mathnet.ru/eng/tmf10580
  • https://doi.org/10.4213/tmf10580
  • https://www.mathnet.ru/eng/tmf/v217/i2/p317
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :4
    Russian version HTML:44
    References:32
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024