Abstract:
A random motion in 1D inhomogeneous media is considered. A moving particle changes abruptly a direction of velocity at Poisson times. The backward and forward Kolmogorov's equations describing this motion are derived. The explicit formulas for the probability distributions are obtained both for this motion and for the similar motions with reflecting and absorbing barriers.
Citation:
N. E. Ratanov, “Random motion of particle in inhomogeneous 1D media with reflecting and absorbing barriers”, TMF, 112:1 (1997), 81–91; Theoret. and Math. Phys., 112:1 (1997), 857–865
\Bibitem{Rat97}
\by N.~E.~Ratanov
\paper Random motion of particle in inhomogeneous 1D media with reflecting and absorbing barriers
\jour TMF
\yr 1997
\vol 112
\issue 1
\pages 81--91
\mathnet{http://mi.mathnet.ru/tmf1028}
\crossref{https://doi.org/10.4213/tmf1028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1478901}
\zmath{https://zbmath.org/?q=an:0978.82508}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 1
\pages 857--865
\crossref{https://doi.org/10.1007/BF02634100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YD92400004}
Linking options:
https://www.mathnet.ru/eng/tmf1028
https://doi.org/10.4213/tmf1028
https://www.mathnet.ru/eng/tmf/v112/i1/p81
This publication is cited in the following 13 articles:
Nikita Ratanov, Alexander D. Kolesnik, Telegraph Processes and Option Pricing, 2022, 223
Macci C., Martinucci B., Pirozzi E., “Asymptotic Results For the Absorption Time of Telegraph Processes With Elastic Boundary At the Origin”, Methodol. Comput. Appl. Probab., 23:3 (2021), 1077–1096
Di Crescenzo A., Martinucci B., Zacks Sh., “Telegraph Process With Elastic Boundary At the Origin”, Methodol. Comput. Appl. Probab., 20:1 (2018), 333–352
Kolesnik A.D., “Linear Combinations of the Telegraph Random Processes Driven By Partial Differential Equations”, Stoch. Dyn., 18:4 (2018), 1850020
Alexander D. Kolesnik, “The explicit probability distribution of the sum of two telegraph processes”, Stoch. Dyn., 15:02 (2015), 1550013
Kolesnik A.D., “Probability Distribution Function For the Euclidean Distance Between Two Telegraph Processes”, Adv. Appl. Probab., 46:4 (2014), 1172–1193
Alexander D. Kolesnik, “Probability Distribution Function for the Euclidean Distance Between Two Telegraph Processes”, Adv. Appl. Probab., 46:04 (2014), 1172
Alexander D. Kolesnik, Nikita Ratanov, SpringerBriefs in Statistics, Telegraph Processes and Option Pricing, 2013, 45
Bogachev L., Ratanov N., “Occupation time distributions for the telegraph process”, Stochastic Process Appl, 121:8 (2011), 1816–1844
D'Ovidio M., Orsingher E., “Composition of Processes and Related Partial Differential Equations”, J Theoret Probab, 24:2 (2011), 342–375
Nikita Ratanov, “Branching random motions, nonlinear hyperbolic systems and travellind waves”, ESAIM: PS, 10 (2006), 236
Alexander D. Kolesnik, “Cyclic planar random evolution with four directions”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 2, 27–32
A. D. Kolesnik, E. Orsingher, “Analysis of a Finite-Velocity Planar Random Motion with Reflection”, Theory Probab. Appl., 46:1 (2002), 132–140