Abstract:
We found the asymptotic formula for correlations decay ⟨fA(x(0)),gA+k(t)(x(t))⟩, when t→∞, k(t)→∞, k(t)∈Zd, in the stochastic model of planar rotators on a lattice x(t)={xk(t),k∈Zd}, t≥0, xk(t)∈T1 at high temperatures. The basic methods we use are the spectral analysis of the Markov semigroup generator and the saddle-point method.
Citation:
E. A. Zhizhina, “Asymptotic formula for correlation decay in the stochastic model of planar rotators at high temperatures”, TMF, 112:1 (1997), 67–80; Theoret. and Math. Phys., 112:1 (1997), 844–856
\Bibitem{Zhi97}
\by E.~A.~Zhizhina
\paper Asymptotic formula for correlation decay in the stochastic model of planar rotators at high temperatures
\jour TMF
\yr 1997
\vol 112
\issue 1
\pages 67--80
\mathnet{http://mi.mathnet.ru/tmf1027}
\crossref{https://doi.org/10.4213/tmf1027}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1478900}
\zmath{https://zbmath.org/?q=an:0978.82502}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 1
\pages 844--856
\crossref{https://doi.org/10.1007/BF02634099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YD92400003}
Linking options:
https://www.mathnet.ru/eng/tmf1027
https://doi.org/10.4213/tmf1027
https://www.mathnet.ru/eng/tmf/v112/i1/p67
This publication is cited in the following 2 articles:
Minlos, RA, “On the spectrum of the generator of an infinite system of interacting diffusions”, Communications in Mathematical Physics, 206:2 (1999), 463
Zhizhina, EA, “Two-particle spectrum of the generator for stochastic model of planar rotators at high temperatures”, Journal of Statistical Physics, 91:1–2 (1998), 343