Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 3, Pages 354–373
DOI: https://doi.org/10.4213/tmf10254
(Mi tmf10254)
 

This article is cited in 16 scientific papers (total in 16 papers)

Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation

Xiu-Bin Wang, Sh.-F. Tian

School of Mathematics, China University of Mining and Technology, Xuzhou, China
References:
Abstract: We theoretically calculate general higher-order soliton solutions of the space-shifted parity–time-symmetric nonlocal multicomponent nonlinear Schrödinger equation via a Darboux dressing transformation with an asymptotic expansion method. A family of solutions is presented in separating variables. In particular, the obtained solutions contain rich dynamical patterns, most of which have no counterparts in the corresponding local nonlinear Schrödinger equation. These results may contribute to explaining and enriching the corresponding nonlinear wave phenomena emerging in nonlocal wave modes.
Keywords: integrable shifted nonlocal multicomponent nonlinear Schrödinger equation, Darboux dressing transformation, solitons.
Funding agency Grant number
National Natural Science Foundation of China 11975306
This work is supported by the National Natural Science Foundation of China under grant No. 11975306.
Received: 20.01.2022
Revised: 07.03.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 3, Pages 1193–1210
DOI: https://doi.org/10.1134/S0040577922090033
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Xiu-Bin Wang, Sh.-F. Tian, “Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation”, TMF, 212:3 (2022), 354–373; Theoret. and Math. Phys., 212:3 (2022), 1193–1210
Citation in format AMSBIB
\Bibitem{WanTia22}
\by Xiu-Bin~Wang, Sh.-F.~Tian
\paper Exotic localized waves in the~shifted nonlocal multicomponent nonlinear Schr\"{o}dinger equation
\jour TMF
\yr 2022
\vol 212
\issue 3
\pages 354--373
\mathnet{http://mi.mathnet.ru/tmf10254}
\crossref{https://doi.org/10.4213/tmf10254}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538845}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212.1193W}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 3
\pages 1193--1210
\crossref{https://doi.org/10.1134/S0040577922090033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139218018}
Linking options:
  • https://www.mathnet.ru/eng/tmf10254
  • https://doi.org/10.4213/tmf10254
  • https://www.mathnet.ru/eng/tmf/v212/i3/p354
  • This publication is cited in the following 16 articles:
    1. Metin Gürses, Aslı Pekcan, “On Sawada-Kotera and Kaup-Kuperschmidt integrable systems”, Commun. Theor. Phys., 77:2 (2025), 025003  crossref
    2. Metin Gürses, Aslı Pekcan, “The method of Mn-extension: The KdV equation”, Physics Letters A, 533 (2025), 130217  crossref
    3. Ya-Hui Liu, Rui Guo, Jian-Wen Zhang, “Inverse scattering transform for an integrable inhomogeneous time shifted nonlocal lattice”, Nuclear Physics B, 1011 (2025), 116798  crossref
    4. Minghan Liu, Jalil Manafian, Gurpreet Singh, Abdullah Saad Alsubaie, Khaled Hussein Mahmoud, Parvin Mustafayeva, “Wave Profile, Paul-Painlevé Approaches and Phase Plane Analysis to the Generalized (3+1)-Dimensional Shallow Water Wave Model”, Qual. Theory Dyn. Syst., 23:1 (2024)  crossref  mathscinet
    5. Xin Wu, Yong Chen, Xue-Wei Yan, “General soliton, line breather and (semi-)rational solutions for the nonlocal long-wave-short-wave resonance interaction equation”, Nonlinear Dyn, 112:1 (2024), 661  crossref
    6. Xue-Wei Yan, Yong Chen, Xin Wu, “Robust inverse scattering analysis of discrete high-order nonlinear Schrödinger equation”, Zeitschrift für Naturforschung A, 79:4 (2024), 391  crossref
    7. Jalil Manafian, Baharak Eslami, Gurpreet Singh, Anjan Kumar, Naief Alabed Alkader, Freddy Ajila, Qurbanova Afat Qahraman Qizi, “Investigating the irrotational gravity waves along the surface of an inviscid incompressible fluid model by modified nonlinear Schrödinger equation”, Opt Quant Electron, 56:5 (2024)  crossref
    8. Jiguang Rao, Dumitru Mihalache, Minjie Ma, Jingsong He, “The coupled space-shifted nonlocal nonlinear Schrödinger equation: Multiple bright-dark double-pole solitons, multiple negaton-type solitons, and their associated mixed solitons”, Physics Letters A, 493 (2024), 129244  crossref  mathscinet
    9. Zhanhong Ren, Minjie Ma, Jiguang Rao, “Asymptotic collision properties of multiple antidark and dark soliton pairs in partially and fully space-shifted \varvecPT-symmetric nonlocal Davey–Stewartson I equations”, Nonlinear Dyn, 112:3 (2024), 2175  crossref
    10. Mark J. Ablowitz, Ziad H. Musslimani, Nicholas J. Ossi, “Inverse scattering transform for continuous and discrete space‐time‐shifted integrable equations”, Stud Appl Math, 2024  crossref
    11. D. Jiang, Zhaqilao, “Solitons, breathers and periodic rogue waves for the variable-coefficient seventh-order nonlinear Schrödinger equation”, Phys. Scr., 98:8 (2023), 085236  crossref
    12. F. Zhou, J. Rao, D. Mihalache, J. He, “The multiple double-pole solitons and multiple negaton-type solitons in the space-shifted nonlocal nonlinear Schrödinger equation”, Applied Mathematics Letters, 146 (2023), 108796  crossref  mathscinet
    13. W.-X. Zhang, Y. Liu, “Direct reduction approach and soliton solutions for the integrable space–time shifted nonlocal Sasa-Satsuma equation”, Results in Physics, 49 (2023), 106509  crossref
    14. J.-G. Rao, S.-A. Chen, Z.-J. Wu, J.-S. He, “General higher-order rogue waves in the space-shifted PT-symmetric nonlocal nonlinear Schrödinger equation”, Acta Phys. Sin., 72:10 (2023), 104204
    15. H. I. Abdel-Gawad, “Field and reverse field solitons in wave-operator nonlinear Schrödinger equation with space-time reverse: Modulation instability”, Commun. Theor. Phys., 75:6 (2023), 065005  crossref  mathscinet
    16. Ji-Guang Rao, Sheng-An Chen, Zhao-Jun Wu, Jin-Song He, “General higher-order rogue waves in the space-shifted <inline-formula><tex-math id="M2">\begin{document}PT\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M2.png"/></alternatives></inline-formula>-symmetric nonlocal nonlinear Schrödinger equation”, Acta Phys. Sin., 72:10 (2023), 104204  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :52
    References:45
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025