Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 3, Pages 340–353
DOI: https://doi.org/10.4213/tmf10285
(Mi tmf10285)
 

This article is cited in 2 scientific papers (total in 2 papers)

Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of $H^{3+2}$ Hamiltonian systems

V. A. Pavlenko

Institute of Mathematics with Computer Center, Ufa Science Center, Russian Academy of Sciences, Ufa, Russia
Full-text PDF (466 kB) Citations (2)
References:
Abstract: We construct joint $2\times2$ matrix solutions of the scalar linear evolution equations $\Psi'_{s_k}=H^{3+2}_{s_k}(s_1,s_2,[0]x_1,x_2, \partial/\partial x_1,\partial/\partial x_2)\Psi$ with times $s_1$ and $s_2$, which can be treated as analogues of the time-dependent Schrödinger equations. These equations correspond to the so-called $H^{3+2}$ Hamiltonian system, which is a representative of a hierarchy of degenerations of the isomonodromic Garnier system described by Kimura in 1986. This compatible system of Hamiltonian ordinary differential equations is defined by two different Hamiltonians $H^{3+2}_{s_k}(s_1,s_2,q_1,q_2,p_1,p_2)$, $k=1,2$, with two degrees of freedom corresponding to the time variables $s_1$ and $s_2$. In terms of solutions of the linear systems of ordinary differential equations obtained by the isomonodromic deformation method, with the compatibility condition given by the Hamilton equations of the $H^{3+2}$ system, the constructed compatible solutions of analogues of the time-dependent Schrödinger equations are presented explicitly. We also present a change of variables relating the matrix solutions of analogues of the time-dependent Schrödinger equations defined by two forms of the $H^{3+2}$ system (rational and polynomial in coordinates). This system is a quantum analogue of the well-known canonical transformation relating the Hamilton equations of the $H^{3+2}$ system in these two forms.
Keywords: Hamiltonian systems, Painlevé-type equations, time-dependent Schrödinger equations, isomonodromic deformation method.
Received: 12.03.2022
Revised: 06.05.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 3, Pages 1181–1192
DOI: https://doi.org/10.1134/S0040577922090021
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of $H^{3+2}$ Hamiltonian systems”, TMF, 212:3 (2022), 340–353; Theoret. and Math. Phys., 212:3 (2022), 1181–1192
Citation in format AMSBIB
\Bibitem{Pav22}
\by V.~A.~Pavlenko
\paper Solutions of the~analogues of time-dependent Schr\"odinger equations corresponding to a~pair of $H^{3+2}$ Hamiltonian systems
\jour TMF
\yr 2022
\vol 212
\issue 3
\pages 340--353
\mathnet{http://mi.mathnet.ru/tmf10285}
\crossref{https://doi.org/10.4213/tmf10285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538844}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212.1181P}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 3
\pages 1181--1192
\crossref{https://doi.org/10.1134/S0040577922090021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139182928}
Linking options:
  • https://www.mathnet.ru/eng/tmf10285
  • https://doi.org/10.4213/tmf10285
  • https://www.mathnet.ru/eng/tmf/v212/i3/p340
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :47
    References:39
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024