Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 209, Number 2, Pages 305–326
DOI: https://doi.org/10.4213/tmf10107
(Mi tmf10107)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the $\bar\partial$-problem and dressing method for the complex vector modified KdV equation

Jia Cheng, Shou-Fu Tian, Zhi-Jia Wu

School of Mathematics and Institute of Mathematical Physics, China University of Mining and Technology, Xuzhou, China
References:
Abstract: Starting from a $5\times 5$ local matrix $\bar\partial$-problem, we successfully use the $\bar\partial$-dressing method to derive a hierarchy of nonlinear evolution equations including the nonlinear Schrödinger equation as $n=2$, the vector modified Korteweg–de Vries equation as $n=3$, and the Lakshmanan–Porsezian–Danielvia equation as $n=4$ via introducing a suitable recursion operator $\Lambda^n$. In addition, we employ the $\bar\partial$-dressing method to find the $N$-soliton solutions of the vmKdV equation. Finally, the effects of each parameter on interactions between solitons are discussed, and the effects of the characteristic lines on the relative position of the waves are also analyzed. The method for controlling the propagation direction is presented in detail.
Keywords: vector modified Korteweg–de Vries equation, $\bar\partial$-dressing method, recursion operator, $N$-soliton solution.
Funding agency Grant number
National Natural Science Foundation of China 11975306
Natural Science Foundation of Jiangsu Province BK20181351
Jiangsu Province JY-059
Fundamental Research Funds for the Central Universities of China 2019ZDPY07
2019QNA35
This work was supported by the National Natural Science Foundation of China under Grant No. 11975306, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, and the Fundamental Research Fund for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35.
Received: 05.04.2021
Revised: 17.05.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 209, Issue 2, Pages 1579–1598
DOI: https://doi.org/10.1134/S0040577921110064
Bibliographic databases:
Document Type: Article
MSC: 35Q55; 35Q51; 35C08
Language: Russian
Citation: Jia Cheng, Shou-Fu Tian, Zhi-Jia Wu, “On the $\bar\partial$-problem and dressing method for the complex vector modified KdV equation”, TMF, 209:2 (2021), 305–326; Theoret. and Math. Phys., 209:2 (2021), 1579–1598
Citation in format AMSBIB
\Bibitem{CheTiaWu21}
\by Jia~Cheng, Shou-Fu~Tian, Zhi-Jia~Wu
\paper On the~$\bar\partial$-problem and dressing method for the~ complex vector modified KdV equation
\jour TMF
\yr 2021
\vol 209
\issue 2
\pages 305--326
\mathnet{http://mi.mathnet.ru/tmf10107}
\crossref{https://doi.org/10.4213/tmf10107}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...209.1579C}
\elib{https://elibrary.ru/item.asp?id=47799786}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 209
\issue 2
\pages 1579--1598
\crossref{https://doi.org/10.1134/S0040577921110064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000721607000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85119835307}
Linking options:
  • https://www.mathnet.ru/eng/tmf10107
  • https://doi.org/10.4213/tmf10107
  • https://www.mathnet.ru/eng/tmf/v209/i2/p305
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :42
    References:48
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024